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Abstract. Standard chamfer matching techniques and their state-of-
the-art extensions are utilizing object contours which only measure the
mere sum of location and orientation differences of contour pixels. In our
approach we are increasing the specificity of the model contour by learn-
ing the relative importance of all model points instead of treating them
as independent. However, chamfer matching is still prone to accidental
matches in dense clutter. To detect such accidental matches we learn the
co-occurrence of generic background contours to further eliminate the
number of false detections. Since, clutter only interferes with the fore-
ground model contour we learn where to place the background contours
with respect to the foreground object boundary. The co-occurrence of
foreground model points and background contours are both integrated
into a single max-margin framework. Thus our approach combines the
advantages of accurately detecting objects or parts via chamfer matching
and the robustness of a max-margin learning. Our results on standard
benchmark datasets show that our method significantly outperforms cur-
rent directional chamfer matching, thus redefining the state-of-the-art in
this field.

1 Introduction

Chamfer matching is a widely used technique for object detection. Due to its sim-
plicity and efficiency it has been employed in a variety of applications to match
whole object boundaries as well as partial object contours. Despite these ad-
vantages chamfer matching has a serious drawback when contours are matched
in cluttered image regions. Contour matches in cluttered regions have a high
accidentalness which can not be distinguished from matches on the actual ob-
ject. Recent research made some attempts to improve specificity by including
orientation information [1,2] in the distance function. The limitation of these
approaches is that the presence of individual model points in a query image
is measured independently. As demonstrated by Biederman [3], Attneave [4],
and various experiments on illusionary contours, object boundary pixels are not

* Both authors contributed equally to this work.
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all equally important due to their statistical interdependence. To address this
issue we learn the relevance of model points and give higher weight to more
important model points. Furthermore we learn a flexible co-placement of generic
background contours to reduce the accidentalness of matches in dense back-
ground clutter. We integrated these two learning steps into a single max-margin
framework based on the state-of-the-art directional chamfer matching approach
of Chellappa et al. [2] and evaluate the gain in performance.

2 Related Work

Chamfer matching has been used in a large number of applications in computer
vision. It was first introduced by Barrow et al. [5] to match two sets of contour
fragments. Since then chamfer matching has been widely applied and has been
a successful technique for detecting complete objects or their parts. In [6] hier-
archical chamfer matching was suggested where edge points are matched in a
coarse-to-fine-manner. Later, chamfer matching was used to build powerful de-
tectors as proposed in [7-9]. Leibe et al. [7] combine local features with global
shape cues obtained from chamfer matching to verify and refine hypotheses. In
[8], Gavrila and Munder have applied chamfer matching for real-time pedestrian
detection and tracking. Lin et al. [9] have proposed a hierarchical part-template
matching approach for detection and segmentation which measures shape infor-
mation in terms of chamfer matching scores.

In [10] Thayananthan et al. have compared shape context [11] and chamfer
matching of templates for object detection in cluttered images. They reported
that chamfer matching is more robust to clutter than shape context. Neverthe-
less, false positives in cluttered background were still found to be the major
downside of chamfer matching.

More recent research has made attempts to address this problem. Shotton et
al. [1] suggested an improved matching scheme called oriented chamfer matching
(OCM) that takes into account the orientation mismatch between pixels. In [2]
an alternative approach for incorporating edge orientation has been proposed
which solves the matching problem in an augmented space. It was shown that the
suggested directional chamfer matching (DCM) achieves a superior performance
compared to oriented chamfer matching. Another improvement was proposed
in [12] where manually selected tuples of contour fragments have been used as
normalizers for oriented chamfer matching.

[1, 2] focus on adding orientation information to improve the matching quality
of the foreground template. In both approaches, the score for an object hypothe-
sis is obtained by summing over all the template pixels in the distance transform
of the query image. However, an object is more than the mere sum of the dis-
tance transformation of each template pixel, considering the evidence from [3, 4]
which indicates that not all boundary pixels are equally important.

[12] proposed to reduce the chamfer matches in clutter by normalizing tem-
plate matches with manually combined normalizer contours. These normalizers
are placed at the center of the template matches. However, to sufficiently model
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Fig. 1. a)-c) show the relative pixels weights for applelogos, bottles and swans learnt
with a linear max-margin classifier. Red indicates high weight and blue low weight.

complex background, it is important to combine simple contours via flexible
placement going beyond the manual combinations of normalizers. We measure
the accidentalness of a match to clutter by learning the co-placement of back-
ground contours dependent on the foreground.

We integrate the i) relative importance of different pixels on a foreground
template and ii) accidentalness of a template match to clutter into a single dis-
criminative approach. Our final detection system improves the matching perfor-
mance of a foreground template while suppressing spurious matches in cluttered
background using the proposed background regularization.

3 Reducing Accidentalness in Chamfer Matching

Our approach is based on the publicly available fast directional chamfer match-
ing approach of [2] which was shown to achieve state-of-the-art performance in
chamfer-based matching. Let us now briefly review the fast directional chamfer
matching [2] and introduce the required notation. Each object is represented by
a collection of contours of its different parts. Let P = {p,} and Q = {q;} be
the pixels of an object part and query edge maps respectively. Let ¢(p;) be the
edge orientation of the edge point p;,.

For a given location x of the object part in the query image, directional
chamfer matching aims to find the best q; € @ for each p;, € P by minimizing
the cost |(p; +x) — q;| + Aé(p; +x) — #(q;)|- A denotes the weighting factor
between location and orientation terms. Thus the directional chamfer distance
for placing an object part at location x is defined as

dpciar (x) |P| EE:P min (P +%) =gyl + Ao(pi +x) —dlay)l - (1)

3.1 Interdependence of Model Points

Not all the pixels on an object part are equally important for detecting ob-
jects. Consider for instance the famous Kanizsa triangle. Provided only contour
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fragments around the corners, the whole triangle can be easily recognized. Sim-
ilarly, Biederman [3] presents perceptual experiments with degraded contours
that demonstrate the varying importance of different points on object contours.
Another example is Attneave’s cat [4], where for instance, points of high curva-
ture are proposed as the most useful features for recognition. However, we want
to automatically learn which parts of the model are important, rather than man-
ually encoding a set of rules that define the importance of contour points. While
there is related work, for instance, on saliency [13] and interest point detection
[14], we seek a formulation that can be directly integrated into chamfer match-
ing. Moreover, the interest points are detected based on each training image
separately whereas we seek important points of an object part based on joint
consideration of all the training images.

In chamfer matching, matching costs for an object part are obtained by
summing over all the object part pixels in the distance transform of the query
image as in Eq. (1). Thus, all the pixels are implicitly considered to be equally
important when computing the matching costs. To take into account the fact
that not all pixels are equally important, we learn discriminative weights for the
co-occurrence of individual points of an object part, i.e., of their matching costs

17 (x) = Dnin [(p; +x) — qyf + Alé(p; +x) — d(qy)| (2)
J

Since adjacent pixels of an object part are statistically dependent, we utilize the

line representation for the templates from [2] and learn discriminative weights

for each line of the object part. Thus, all the pixels which lie on the same line

are assigned the same weight. Let #; denote the matching cost of line [ fitted to

the object part.

= 1"V x) (3)

i€l

The discriminative learning algorithm that discovers the weights for the co-
occurrences of lines is described in Sect. 3.3. For examples of relative pixel
weights see Fig. 1.

3.2 Background Contours for Modelling Accidentalness

One of the main drawbacks of chamfer matching is the liability to false positive
matches in background clutter. Increasing the specificity of the model contour
matches by adding orientation information [2,1] and learning the importance
of foreground contour pixels can only partially solve the problems arising from
background clutter Fig. 4. Consequently we need to measure the accidentalness
of an object part matching in the background clutter. To measure such acci-
dentalness, we introduce a set of simple, generic contour segments (see Fig. 2 a)
that typically match equally well to background clutter and the correct part con-
tour. We refer to this set of contours as background contours. Since each single
background contour segment has a very low specificity we learn discriminative



Reducing Accidentalness in Chamfer Matching 5

- : i
a) b) c) d)
Fig. 2. a) shows a set of simple background contours. These background contours are
used to regularize the chamfer response of a part p;. b)-d) show the masks described

in Eq. (4) obtained from placing the background contours at the top relative to the
object part contour on the left.

2N /N

co-occurrence patterns which have very low accidentalness. By going for flexi-
ble spatial arrangements of background contours, we avoid manually combining
tuples of normalizers consisting of one or two contours to form hand designed
complex background templates as in [12]. Furthermore, we measure the amount
of clutter only in the neighborhood of model contours, where clutter actually
interferes with the matching of the model contour while in [12] background con-
tours are placed at a fixed single location (the center of the model contour). The
importance of the second point is illustrated by the following example. Consider
a U-shaped object part being matched to a query image. Clutter from the query
image that is situated within the U does not interfere with the object part. Only
clutter that is close to the contour of the U will have an impact. Thus, [12] miss
out on measuring the susceptibility of the model contour to clutter and instead
measure clutter simply at the center of the object.

To make sure that background contours T3, are placed on the foreground
contour P, where accidental matches typically occur, we create a mask for every
combination of a foreground part and a background contour

MT P ) = 1 = dpetiy” (x) 4)

These masks give high weight to regions where the background contour matches
well on the part contour and low weight otherwise. Figure 2 shows the resultant
masks for three different foreground bottle parts in combination with different
background contours.

To describe the background matching costs for a hypothesis in a robust way
we build weighted histograms over chamfer matching costs. Let X be one specific
placement of the foreground object part P on the query image (). Furthermore
we define B(X) to be the bounding box region of P centered at x. For each
foreground hypothesis we build weighted histograms h(T+s@) over the directional
chamfer matching costs dgé?]{f ) in the corresponding bounding box region. The
weights introduced in Eq. (4) are used to weight the histogram votes according
to their position relative to the foreground object part. Each histogram consists
of K bins where My, is the range of the kth bin and k£ = 1,..., K. We define a
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histogram bin h,(CTbg’Q) as

h;ﬁTbg:Q) — Z M(Tbg,P) (X), (5)
xE€B(x)
dpi” (x)EM

for each background contour T3, on a certain position of the foreground object
part P in the query image Q.

3.3 Learning Co-occurrences for Foreground and Background

We combine the twin problems of i) modeling the co-occurrence of points on a
foreground object part and ii) modeling the accidentalness of a match by means
of co-occurrence patterns of background contours into a single discriminative
approach. We regularize directional chamfer matching by learning the charac-
teristic co-occurrence of foreground object part pixels and the joint placement
of background contours.

As training data this learning algorithm utilizes the object hypotheses ob-
tained from running the directional chamfer matching code [2] on the training
images. A hypothesis j having an overlap greater than 80% with the groundtruth
is labeled as positive y; = 1, while a hypothesis with an overlap smaller than
40% is labeled as negative y; = —1. For each object hypothesis we build a feature
vector f; as constructed in Eq. (6).

fj = [{1 {L hy ... hK] (6)

L denotes the number of line segments fitted to the object part and K denotes
the number of background contours.

Let IC be a kernel such that /C(f;, f;) represents the similarity between fea-
ture vectors fi, f;. Subsequently, we use the radial basis kernel K(f;, f;) =
exp (—v||fi — f;|I*). It is common practice in the field of kernel machines, to in-
terpret the kernel IC(f;, f;) as a dot product of transformed features ¥ (f;), (f;).
Here 1 represents the mapping of the feature vector into a higher dimensional
space. Due to the seminal ‘kernel trick’ [15] it is sufficient to define the kernel
K without explicitly representing the mapping . We then seek weights w to be
applied on ¥ (f;) so that the margin between positive and negative hypotheses
in the transformed space is maximized. Since we employ the non-linear RBF
kernel, the resulting classifier will learn non-linear relationships between the fea-
tures and model the joint co-occurrences of foreground and background contours.
We need to optimize the following max-margin classification problem to learn
the weights w.

N
1
min Sllw|3+CY ¢ (7)
b, =
subject to :

v p(f)+b)>1-¢ A >0
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Fig. 3. Learning discriminative weights for the co-occurrences of tEP’Q) (x) improves the
matching score of shape template as shown in the example here. The original image,
the result obtained from directional chamfer matching and the result obtained from
foreground reweighting are shown in panels a,b and c respectively. The groundtruth
bounding box is shown in green and the top scoring object hypotheses are shown in
red.

where N is the number of training samples, b is the offset, C is the penalty and ¢;
are slack variables allowing for margin violations. Commonly Eq. (7) is converted
into its dual form and solved for the dual SVM parameters, the support vectors
S;, their coefficients «; and the offset b.

3.4 Object Detection using Regularized Chamfer Matching

In the previous section we have described how the relevance of model points and
the accidentalness measured using background contours can be jointly learned.
Let us now utilize the combined model of foreground relevance and background

accidentalness from Eq. (7) to improve upon the directional chamfer matching

cost function Eq. (1). This improved, regularized chamfer distance dg;apb%)M (x)

again measures the distortion cost of an object part f;. Let the j-th object
hypothesis f;, which is described by the feature vector from Eq. (6), be the
placement of object part P at location x in the query image (). Since a non-linear
radial basis kernel is employed, the regularized chamfer distance is obtained using
the dual SVM parameters, obtained by solving the SVM optimization problem
from Eq. (7) in its dual form,

dgzpb%)M(X) =1- (Z%"C(fj, Si) + b)- (8)

Each object part matched to a query image casts a vote with weight drpoar
as computed in Eq. (8) for different placements of the part in the query image.
The votes from various parts are collected in a Hough accumulator and non-max
suppression is performed to obtain final candidate hypotheses for objects.

4 Experimental Evaluation

To demonstrate the utility of the proposed discriminative chamfer regularization,
we evaluate our approach on benchmark datasets for chamfer matching. Since we
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integrated our regularization into the publicly available code of [2], the results
reported in [2] have been used as the baseline. To demonstrate the advantage of
our regularization over learning the normalization for chamfer distances [12], a
comparison is made with the results documented in [12]. We also compare with
a sophisticated learning and inference approach applied on object contours [16].
Furthermore, an analysis of the running time overhead caused by discriminative
chamfer regularization compared to the running time of the chamfer matching
approach of [2] is presented.

To extract the edge maps from input RGB images, we utilize the probabilistic
boundary detector of [17]. The weights w in Eq. (7) are learnt using the sup-
port vector machine implementation of [18]. To measure the performance of our
detection system, we employ the standard PASCAL overlap criterion according
to which a detection is correct if the ratio of intersection and overlap between
groundtruth and the detection is larger than 50%.

The individual contributions of the proposed foreground and background reg-
ularization are presented in Sect. 4.3. We analyze the contribution of reweighting
the foreground template pixels as in Eq. (2) and then the performance obtained
by the combined foreground and background regularization as in Eq. (7). The
gain obtained by these contributions is compared with the baseline obtained by
[2]. Sect. 4.4 compares the proposed regularization with other state-of-the-art
extensions to chamfer matching such as [12, 16].

4.1 Datasets

For our experimental evaluation, we use the TUD Pedestrians, TUD Cows and
the ETHZ Shape datasets. These are the benchmark datasets for chamfer match-
ing and approaches such as [1, 2, 12] report their results on one or more of these
datasets. The TUD Pedestrian dataset provides two training sets with 210 and
400 side-view pedestrians. Following the protocol of [12], we use 400 images
for training, 5 masks from the training images as model shape templates and
250 images for testing. The Cow dataset from the PASCAL Object Recognition
Database Collection [19] consists of 111 images in which cows appear with quite
different articulation. The protocol from [12] is used to divide the dataset into
training and testing sets. Five masks from the training images are obtained as
the shape templates. For the ETHZ shape dataset, according to the standard
protocol one hand-drawn example provided along with each category is used
as a shape template. For the object categories applelogos, bottles and swans,the
template is decomposed into four parts while for the categories giraffes and mugs
the full template was utilized.

4.2 Running time

To obtain the initial matches for the templates, we run the publicly available
directional chamfer matching code of [2] using the default parameters for all the
datasets. In our experimental evaluations, we have observed that computing the
distance transformation of a query image for each angular quantization is the
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Table 1. Comparison of average precision for three datasets namely, TUD Pedes-
trians, Cows and the ETHZ Shape classes. We compare DCM [2] which constitutes the
basis of our approach with the extension from Sec. 3.1 and our final learning of regu-
larized chamfer matching. All the detections are evaluated based on PASCAL overlap
criterion with the groundtruth object annotations.

l ‘Pedestrians ‘ Cows‘Applelogos ‘ Bottles‘ Giraffes ‘ Mugs‘ Swans‘
DCM [2] 3.0 88.1 60.8 85.5 | 27.0 |10.1| 33.1

FG Regularization 6.8 89.2 62.0 86.9 36.3 |27.3| 33.8
Combined Regularization 11.2 91.9 81.8 90.4 | 43.0 |27.3|47.3

most time consuming part in the code of [2]. The proposed chamfer regularization
added only a marginal overhead to the computation time. For instance, only 2
second overhead is observed per image from TUD Cow dataset. On the other
hand, computations for the baseline performance [2] took about 15 seconds per
image. Thus, our approach turns out to be easily integrable into a state-of-the-
art chamfer matching approach, without adding significant overhead in terms of
running time.

4.3 Evaluating Foreground and Background Regularization

Table 1 compares the baseline directional chamfer matching, which constitutes
the basis of our approach, with the different components of our discriminative
chamfer regularization. In particular, the performance of our foreground regular-
ization method and the performance of our combined detector using foreground
and background regularization are evaluated. Figure 1 shows the relative im-
portance of various pixels of the foreground template learnt by using a linear
SVM. The experiments show that foreground regularization alone already im-
proves performance in terms of average precision on all of these object categories.
Additionally applying the background regularization suppresses even more false
positives in cluttered background and, thus, yields a significant further gain.
For the TUD Pedestrian dataset the images in the testing set are provided at
a very high resolution which yields very low average precision for the directional
chamfer matching which is around 3%. The low baseline can be attributed to
the high resolution of the test images, since it is known that chamfer matching
is sensitive to all the fine details in the edge map. Our foreground regularization
more than doubled the average precision obtained from the baseline. Adding the
background regularization brought a further gain of 4.4% in average precision.
For the Cow dataset directional chamfer matching yields very good performance
around 88% average precision. Nevertheless, our combined detector still improves
the performance about 4% by exploiting the advantages of foreground and back-
ground regularization. In Fig. 3 one can see how foreground reweighting improves
the alignment with the groundtruth. The background normalization becomes
particularly useful for categories such as applelogos, bottles and swans where
most of the performance gain can be attributed to background regularization.
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Fig. 4. This example shows how combined foreground and background regularization
Eq. (7) can remove false positive detections which could not be eliminated by fore-
ground reweighting alone. Panel a) shows the original image, b) the result obtained
by using foreground reweighting and c) the results from the combined foreground and
background regularization. Best viewed in color.

The example in Fig. 4 shows that foreground regularization is not always able
to suppress false positives in cluttered background and how background regu-
larization can handle such cases. For a challenging category like Giraffes with
articulations and background clutter, both foreground and background regular-
ization are found to be equally helpful. For the category of mugs we observed that
explaining the foreground more accurately is more important than suppressing
false detections in cluttered background. We observe 17.3% improvement in aver-
age precision by learning the co-occurrence of template pixels while our combined
detector yields results in the same range. All in all our combined detector using
foreground and background regularization achieves significant gain on all of the
seven categories compared to directional chamfer matching. Additional detec-
tion results comparing the regularized chamfer matching to directional chamfer
matching are provided in Fig. 5.

4.4 Comparison with State-of-the-Art Extensions to Chamfer
Matching

We compare our combined foreground and background regularization with other
state-of-the-art extensions to chamfer matching such as the normalized oriented
chamfer matching by Ma et al. [12] (NOCM) and the hierarchical deformable
template model (HDT) by Zhu et al. [16].

[12] have reported results on two datasets: the TUD Pedestrian dataset [20]
and the Cow dataset [19]. [16] have evaluated their method on the Cow dataset.
Both the approaches report their results in terms of detection rate at 10% pre-
cision. In the previous section, we have reported the gain obtained by our regu-
larization in terms of average precision, since it is taking into account the area
under the precision recall curve instead of just one point on the performance
curve and therefore is a more robust measure. Nevertheless, to compare our-
selves with [12, 16], we need to report results in terms of detection rate at 10%
precision.
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Fig. 5. Panel a) and b) show detection results for two examples. The left image of each
panel shows results obtained by directional chamfer matching. The right image of each
panel shows the improved detection result after applying chamfer regularization. The
groundtruth bounding box is shown in green and the top scoring object hypotheses are
shown in red. Best viewed in color.

Table 2. Comparison in terms of detection rate at 10% precision (in %) on the Cow
dataset and the TUD Pedestrian dataset with OCM, NOCM and HDT.

l [Cows[Pedestriansl

OCM [1] 739 352
NOCM [12] 91.0 70.0

HDT [16] 88.2 -
Regularized Chamfer Matching| 98.3 80.0

Table 2 shows the results for the Cow dataset and the TUD Pedestrian
dataset. The results indicate that chamfer regularization significantly improves
performance on the Cow dataset compared to HDT and NOCM. For TUD Pedes-
trians we gain 10% in detection rate compared to NOCM. All in all our results
confirm that the regularized chamfer matching method significantly improves
over state-of-the-art extensions to chamfer matching.

5 Conclusion

This contribution extends the well established and widely used chamfer match-
ing technique, particularly by overcoming its susceptibility to clutter. Our re-
sults confirm, that learning the co-occurrence of model points is increasing the
specificity of the template by supporting the differing relevance of model points
instead of treating them as independent and equally important. Furthermore,
accidental matches in background clutter can be suppressed by placing our
generic contours on the model contour and learning to distinguish the typi-
cal co-occurrence of these contours on cluttered background compared to actual
objects. These two contributions are integrated in a max-margin learning frame-
work which is based on state-of-the art directional chamfer matching. *

! This work was supported by the Excellence Initiative of the German Federal Gov-
ernment and the Frontier fund, DFG project number ZUK 49/1.
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