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Abstract. The most prominent approach for autonomous cars to learn
what areas of a scene are drivable is to utilize tedious human supervi-
sion in the form of pixel-wise image labeling for training deep semantic
segmentation algorithms. However, the underlying CNNs require vast
amounts of this training information, rendering the expensive pixel-wise
labeling of images a bottleneck. Thus, we propose a self-supervised ap-
proach that is able to utilize the myriad of easily available dashcam videos
from YouTube or from autonomous vehicles to perform fully automatic
training by simply watching others drive. We play training videos back-
wards in time and track patches that cars have driven over together with
their spatio-temporal interrelations, which are a rich source of context
information. Collecting large numbers of these local regions enables fully
automatic self-supervision for training a CNN. The proposed method has
the potential to extend and complement the popular supervised CNN
learning of drivable pixels by using a rich, presently untapped source of
unlabeled training data.

1 Introduction

The amount of video being recorded by dashboard cameras is increasing expo-
nentially, thus becoming a potentially valuable source of training data for driver
assistance and autonomous driving systems. However, the prevalent approach
for many of these systems has been supervised learning of Convolutional Neural
Networks (CNN) for semantic segmentation of traffic scenes [23,22,7]. A core
sub-task of many of these systems is the detection of drivable surfaces (i.e. road
detection to avoid lane departure or to plan driving trajectory), where tedious
pixel-wise supervision of drivable areas needs to be collected in order to train a
supervised model. While this supervision can improve the model performance on
particular evaluation sub-sets [14,9], the statistics captured by these datasets may
not be transferrable to other scenarios, e.g. a model trained on data collected
in Germany [9] cannot be expected to perform equally in a UK based traffic
scenario. Alternatively, scaling the labeling effort to the wide variety of traffic
scenarios present all around the world is a futile undertaking.

Therefore, what we need is not simply more labelled data, as human annotators
would always present a bottleneck to scale up learning. What we strive for is
to enable learning algorithms to use the virtually unlimited number of dashcam
videos available (YouTube, etc.), which are presently inaccessible for the current
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Fig. 1: Pipeline of the proposed approach for self-supervised learning of drivable
surface. To obtain self-supervision, dashcam sequences are played back in time
and patches that cars have driven over are marked as drivable and tracked. Using
this self-supervision we propose to train an FCN that is able to effectively predict
drivability of pixels without using any ground-truth labeled samples for training.

supervised learning methods since they are lacking labels altogether. For instance,
the popular KITTI [14] and Cityscapes [9] datasets contain 290 and 25000 labeled
training frames, respectively, compared to the potentially unlimited amount of
unlabeled dashcam footage, which can be easily collected for all possible scenarios
(i.e. different continents, countries, cities, weather conditions, etc.). Therefore,
assuming that a supervised algorithm trained on datasets like [14,9] can be
deployed in diverse real traffic scenarios is, at the very least, unrealistic. In
addition, regardless of the amount of labeling effort and cost invested, the volume
of unlabeled data will always be magnitudes larger.

A clear example are autonomous driving corporations like Tesla, Waymo,
Uber, etc. where the competitive advantage is held by the corporation with more
data collected. As an example, Tesla claims to have 1.3B miles of collected data,
which to improve the autonomous capability of their cars has to be evaluated by
experts and annotators. We hypothesize that a much more favorable situation
would be to let an algorithm do the heavy-lifting and utilize the virtually infinite
unlabeled dashcam footage collected every day. Moreover, the algorithm should
not only learn from its own mistakes as in classical boosting but additionally from
watching other cars drive. Moreover, large amounts of training data have become
even more critical for the presently thriving deeper CNNs [31,18]. In recent years,
there has thus been an increasing general interest in unsupervised training of
CNNs on surrogate tasks [33,12] in order to exploit large amounts of unlabeled
data that are infeasible to label. These unsupervised models can be then directly
used as predictors [4,3] or further fine-tuned with only few labeled samples in
order to compensate for the shift in both the task and data distribution [32].

The goal is then to learn a model for predicting drivable areas in an unsuper-
vised manner, where we are only provided with unlabeled video sequences of a
car interacting with other traffic partakers. Our hypothesis is the following: can
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a CNN learn what areas are drivable by simply watching others? The motivation
has its roots in Experiential Learning inspired by Kurt Lewin and colleagues [21].
Here, the key paradigm is to learn through reflection on a human performing
a particular task [5]. Human beings can learn by reflecting on experience [26]
collected by watching other humans performing a particular task. For example,
when walking over a frozen lake, a person will find a safe path to walk, by
watching other persons on the ice and following their path. Furthermore, when
analyzing how human beings learn to drive, we observe that a driving instructor
is present only for a very limited initial period of time of only a few hours.
However, after driving lessons we continuously improve our driving skills by
watching others drive and reflecting on that experience. In addition, a human
driver may have acquired their skills in particular country with small variation in
conditions, but when travelling to another region can quickly learn to adapt by
watching other traffic partakers and learning by reflection. In this sense, while
the detection of drivable areas in a supervised manner is successfully tackled
by current machine learning approaches, the adaptation and improvement that
human drivers are capable by experiential reflection on other drivers remains an
unexplored problem.

Motivated by this observation we propose to extract self-supervision of drivable
surfaces from large video collections recorded only using inexpensive monocular
dashboard cameras and no other more sophisticated and expensive sensor modal-
ities such as RADAR [24], LIDAR [35], stereo cameras [8], etc., since they are far
less likely to find on, for example, YouTube. To accomplish this task, we play the
training videos backwards in time and track patches so as to find regions that cars
have driven over (including the car that the camera is in). Similarly, we obtain
patches that are unlikely to be drivable. All gathered patches are then used for
discriminative training of a Fully Convolutional Network (FCN), following up on
recent advances for self-supervised learning of CNNs [33,12,1,10,6]. Obviously, we
only play backwards the unlabeled training videos for extracting self-supervision.
During testing, the FCN predicts drivable areas in an image without using any
extra information and by only computing a single forward pass. A visual example
of the proposed pipeline is shown in Figure 1.

We evaluate our approach for unsupervised learning of drivable areas on the
widely used KITTI [14] and Cityscapes [9] datasets, using only unlabeled video
sequences provided with each dataset. In addition, we also gathered a collection of
dashcam videos from YouTube and used them to train our model. The proposed
approach shows how meaningful representations can be extracted from large
volumes of unlabeled traffic footage. The goal is obviously not to completely
replace supervised CNN training, but to open up the potential of adding a rich,
presently untapped source of unlabeled training data.
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2 Related Work

In this section, we review drivable surface detection methods both for the super-
vised and unsupervised settings. However, for a more extended survey of road
detection methods, the readers may refer to a recent survey work [19].

A lot of attention has been paid to supervised classification models for drivable
surface detection. Guo et al. [16] formulated the road detection problem in a
maximum a posteriori (MAP) framework, and used a Markov random field to solve
this problem. In latter work, they also incorporated semantic information and
applied a graphical model to infer the road boundary [17]. Furthermore, following
recent results of CNNs, Alvarez et al. [2] used a CNN to extract the appearance
feature of a patch and classify a road scene into the sky, the vertical regions and
the drivable regions. Furthermore, with the advent of CNNs approaches that
trained FCNs on large labeled datasets have obtained successful results [23,22,7],
at the cost of requiring tedious pixel-wise labeling. To circumvent the high cost
of labeling images at the pixel level, virtual datasets have recently gained a lot of
attention [29,28,15], while such datasets provide inexpensive labeling they fail to
encode the variability of different traffic scenarios and lack the degree of realism
provided by videos recorded in the physical world.

In the avenue of unsupervised learning recent works have exploited spatial and
temporal context to obtain supervisory signal for learning feature representations
using CNNs, obtaining very satisfying results. In this sense, Wang et. al [33],
showed that video can be used as supervisory signal by tracking objects over
time, obtaining comparable results to supervised methods on Imagenet dataset
[11]. In addition, Agrawal et. al [1] showed that ego-motion is a useful source of
intrinsic supervision for visual feature learning in mobile agents. However, this
approach minimized the error between the ego-motion information (i.e. camera
transformation) obtained from its motor system and ego-motion predicted using
its visual inputs only. This is not directly applicable to our case since the ego-
motion information from the car motor system is not available.

3 Unsupervised Learning of Drivable Surfaces

In this section we describe our approach for unsupervised learning of drivable
areas. Our goal is to learn an FCN for prediction of drivable surfaces in a
completely unsupervised manner. However, standard training of FCNs requires
huge amounts of labeled training data, which is infeasible to collect for the
many different driving scenarios in which these systems are deployed. In order to
circumvent this problem, we propose to generate self-supervision by experiential
reflection on unlabeled video sequences.

3.1 Self-supervision by Experiential Reflection

Video sequences recorded by dashboard cameras contain unparalleled numbers of
traffic scenes in which a car drives around while interacting with other road users,
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which cannot be utilized by supervised learning methods. A simple approach to
exploit this tremendous source of untapped traffic information would be to assume
that a small fixed area in front of the car is drivable, generating self-supervision as
the car moves during the video sequence. However, this generated self-supervision
will only model the statistics of a small fixed area in front of the car bumper,
neglecting the rich information provided by the scene and other traffic partakers.
In addition, such approach will fail to model drivable areas far from the car,
left and right turns or changes of drivable areas due to environmental causes
(i.e. changes in lighting, shadows, road marks, etc.). A visual example of such
self-supervision is shown in Fig. 2(a).

Interestingly, if such video sequences are played backwards in time, a human
observer can easily point what areas have been driven over by different traffic par-
takers, and thus, can reflect on the experience (i.e. self-supervision) accumulated
by watching such sequences to learn what makes an area drivable. Following this
observation, we propose to automatically obtain self-supervision by rewinding
sequences back in time and keeping track of surfaces, i.e., image patches, that
different road users have driven over, reflecting on the experience obtained by
watching others to collect supervision.

Given a training video sequence S = {I1, . . . , It}, we obtain self-supervision by
tracking patches that cars have driven over while playing the sequence backwards
in time. To initialize the drivable patches to track, we can assume that a small area
in front of a moving car bumper is a drivable area composed of several patches
Pi

t ∈ Rh×w×3, ∀i ∈ {1, . . . , p}. For the point of view of the car recording the
sequence this is a trivial task, since the bumper position is fixed. To extend this
assumption to the rest of cars in the sequence we simply obtain object proposals
using a car detector [27] and assume that the area directly below the detection is
a drivable surface. When rewinding the sequence we track these patches using
optical flow [25]. Flow is computed densely between pairs of consecutive frames
(It−1, It) and used to estimate a projective transformation with RANSAC [13].
This transformation compensates for the ego motion and is used to establish
correspondences between a patch Pi

t−1 and its successor Pi
t, therefore being able

to track patches that different cars have driven over (cf. supplementary material
for sample video sequences).

To take account of tracking errors (e.g. patch drift) and of the movement of
other road users, we compute the similarity between a patch Pi

t−1 and its pro-
jected successor Pi

t to eliminate unreliable correspondences: since the projective
transformation is estimated using consecutive frames, we can assume that the
color histogram of a patch Pi

t−1 and its projected successor Pi
t is highly similar.

Let h(Pi
t) denote the normalized color histogram of patch Pi

t. Then, given the
pairwise similarities between two consecutive patches:

s(Pi
t−1,P

i
t) = h(Pi

t−1)
>h(Pi

t), (1)

We compute the distribution of distances and truncate it at the pivot point,
thus effectively eliminating unreliable projected drivable patches (i.e. false positive
patches which were projected to a highly dissimilar region) by stopping their
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(a)

(b) (c)

Fig. 2: (a) Self-supervision obtained by fixing a drivable area in front of the car. (b)
Self-supervision obtained using only the car that is recording the video sequence,
where blue and red patches correspond to drivable and non-drivable surfaces,
respectively. (c) Self-supervision computed using different traffic partakers, where
blue patches correspond to drivable surfaces of the egocentric point of view,
green patches denote self-supervision obtained from other cars and red patches
correspond to non-drivable surfaces.

tracks, while reliable tracks are computed until the similarity of two consecutive
patches lies below the pivot point. Drivable patches are tracked for 63 frames on
average with a maximum of 191 frames.

To obtain negatives, i.e., non-drivable patches, we randomly sample patches
from image regions which were not driven over by any car and whose tracks
consisted for more than ten frames (to avoid drifting patches or those occluded
by other objects). In addition, we place negative patches inside the car bounding
boxes computed in the previous step to include other cars in the negative training
set. A visual example is shown in Fig. 2(b) where red and blue patches denote
non-drivable and drivable surfaces, respectively. Furthermore, Fig. 2(c) also shows
in green the self-supervision obtained by tracking patches that other road users
drove over.

3.2 Learning Drivable Surfaces

CNNs are presently among the most powerful classification frameworks for
Computer Vision [31]. Since our self-supervision strategy generates patches of
drivable and non-drivable areas on an image, a natural choice would be to train a
CNN to classify these image patches [20]. However, since our ultimate objective is
to predict the drivability of individual pixels, such approach has two shortcomings:
(i) estimating the drivability of a pixel using only local patch information is a
hard task due to the lack of context information. (ii) testing is computationally
prohibitive since all patches in an image need to be evaluated.

A more efficient approach is to cast the problem as pixel-wise labeling for
each training image using the available self-supervision. All pixels contained in
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a drivable training patch are considered positive and all pixels contained in a
non-drivable patch are negative. Then, a FCN architecture [23,22,7] is trained
for predicting a pixel-wise label for each training image, where pixels which
are not labeled as positive nor negative during the self-supervision step are not
used during training. FCN architectures naturally incorporate context which is
encoded by means of convolution and pooling operations, while being extremely
efficient during testing due to their weight sharing scheme. However, a common
problem of FCNs is to model long-range contextual interactions between pixels.
In our particular case these long-range interactions encode extremely useful
context that helps modelling what makes up a drivable area (e.g. drivable pixels
on the correct side of a curb, road marks, etc.). Therefore, to include these
long-range interactions we use dilated convolutions [34] through all our up-stream
convolutional layers.

Once our FCN is trained, we compute a confidence map for each training
image. However, thresholding these confidence maps to obtain predictions would
not take into account the labeling of neighbor pixels. Therefore, we use GrabCut
[30] to obtain a discrete labeling that aggregates local context at the pixel-wise
label level, using this new self-supervised ground truth we further fine-tune our
FCN and repeat this process for three iterations. Finally, we need discrete output
prediction of drivability. Thus, provided the accuracy of the probability heat-maps
yielded by our iterative approach, we simply threshold these confidence maps.
Computing a confidence map for an image only requires a forward-pass, making
it very effective for real-time deployment1.

4 Experimental Results

In this section, we present both quantitative and qualitative results obtained
by the proposed unsupervised learning approach on the main benchmarks for
pixel-wise drivable surface detection, Cityscapes [9]. Our hypothesis is two fold: (i)
Our self-supervised approach should perform well in zero-shot learning scenarios,
where no labeled samples are provided for training. (ii) Self-supervised training
should serve as a regularizer that helps to generalize when transferring between
similar datasets. Extensive experimental results can be found in the supplementary
material. All models, datasets and generated labels are publicly available at2.

4.1 Datasets

Cityscapes Cityscapes [9] is the biggest dataset available for semantic segmenta-
tion of traffic scenes. Cityscapes contains 25000 fully labeled images at pixel-level.
For evaluation purposes we only utilize the road category. Cityscapes [9] does
not provide the video sequences of their vehicles driving around different cities,
and only allowed us to use three sequences from a single city containing 30000
frames in total to utilize our self-supervised method.
1 Our approach runs at 15 FPS on a NVIDIA Titan X GPU.
2 https://hcicloud.iwr.uni-heidelberg.de/index.php/s/
tutGQ2J3XoUyqkU

https://hcicloud.iwr.uni-heidelberg.de/index.php/s/tutGQ2J3XoUyqkU
https://hcicloud.iwr.uni-heidelberg.de/index.php/s/tutGQ2J3XoUyqkU


8 Bautista et. al

YouTube Dashcam Dataset To further evaluate the generality of our ap-
proach, we additionally acquired 13 dashcam sequences totalling 100000 frames
that were recorded in the wild and uploaded to YouTube. These videos were all
recorded in different cities from Germany and the United States showing varying
weather conditions and seasons, therefore spanning a large variety of scenarios.
Furthermore, we also collected two more sequences with difficult conditions: a
dusty desert trail and a road covered in snow and mud, where each sequence
contains 10000 frames.

4.2 Zero-shot Learning

To assess the performance of our self-supervision method we tackle the problem
of zero-shot learning of drivable areas on CityScapes [9]. That is, methods are
provided with 0 ground-truth labeled training images. We compare state-of-
the-art fully convolutional architectures with and without our self-supervision
method trained on the unlabeled sequences of CityScapes (cf. Sect. 4.1). Tab. 1
summarizes the performance of two different architectures with and without our
self-supervision method. We show results for our variant of FCN-8s [23] (with
dilated upconvolutional layers), with and without Imagenet [11] pre-training. In
addition, we also make use of the ResNet-101 model [18] pre-trained on Imagenet.
In Tab. 1 we observe that our proposed approach for self-supervision drastically
boosts the performance of zero-shot learning for all different architectures, where
our self-supervision computed on the unlabeled sequences of Cityscapes is ex-
tremely helpful for both randomly initialized and pre-trained models. Note that
a randomly initialized model with our self-supervision strategy is able to attain
equivalent performance than the same model pre-trained on Imagenet [11]. Thus,
being able to circumvent the use of the 1.2M of Imagenet labeled samples. To the
best of our knowledge, this is the first time that a self-supervised method that
performs equivalently in the absence of the widely adopted Imagenet pre-training
strategy.

Model MaxF IoU
FCN-8s Random Init. 49.5 32.9

FCN-8s Random Init. + Ours 82.6 70.4
FCN-8s Imgnet. Init. 51.3 34.7

FCN-8s Imgnet. Init. + Ours 81.9 69.4
ResNet-101 Imgnet. Init. 52.5 34.9

ResNet-101 Imgnet. Init. + Ours 79.6 66.1

Table 1: Zero-shot results for Cityscapes benchmark.

Finally, we show few score maps of drivable area yielded by our self-supervised
approach Cityscapes [9] in Fig. 3. Note that our method does not use any ground-
truth labeled image during training.
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Fig. 3: Sample score maps for zero-shot learning on Cityscapes.

4.3 Transfer Learning

We now evaluate the ability of our approach to boost performance on a transfer
learning task where a model is trained on one dataset and then transferred to
another for evaluation. We employ the two most prominent datasets for estimating
drivable areas, KITTI [14] and Cityscapes [9]. The underlying rationale is that
if a model is performing well on KITTI it should also perform equivalently on
Cityscapes. Therefore, we utilize the unlabeled sequences of Cityscapes (cf. Sect.
4.1) for pre-training the FCNs using our self-supervised strategy, before using
the KITTI ground-truth labels to perform supervised learning. After training
this model is then evaluated on Cityscapes. We evaluate transfer learning based
on two separate network architectures, FCN-8s [23] and ResNet-101 [18]. In
Tab. 2 we show the MaxF and IoU scores on Cityscapes of the different models
transferred from KITTI with and without our self-supervised pre-training (first
two columns, denoted with KITTI-TF). We can see that our self-supervised pre-
training is extremely useful when transferring models between datasets, boosting
performance by at least 10%. This performance improvement is due to the
regularization properties of our self-supervision, which prevents the model from
over-fitting to KITTI-like scenarios, thus improving the capability to generalize
to previously unseen scenarios.

4.4 Self-supervision from the Wild: YouTube Dashcam dataset

After providing results using the most prominent datasets for predicting drivable
areas, we now study the problem of collecting self-supervision from the wild. We
therefore utilize the YouTube Dashcam dataset described in Sect. 4.1, collecting
self-supervision for 100000 frames of video data from different locations under
different environmental conditions. For clarity, we follow the evaluation protocol
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for Cityscapes and evaluate the suitability of models trained with self-supervision
from the wild for zero-shot learning. Tab. 2 reports the result of our self-supervised
YouTube training (last two columns, denoted with YT-SS) where we show results
for FCN-8s [23], with and without Imagenet [11] pre-training. In addition, we
also make use of the ResNet-101 model [18] pre-trained on Imagenet. We can
therefore observe how the self-supervision that we collected from video sequences
from the wild is of tremendous power, boosting performance by 18% at least.

Model MaxF/KITTI-TF IoU/KITTI-TF MaxF/YT-SS IoU/YT-SS
FCN-8s Rand. 43.4 27.7 49.5 32.9

FCN-8s Rand. + Ours 55.1 38.0 70.6 54.5
FCN-8s Imgnet. 50.1 33.4 49.5 32.9

FCN-8s Imgnet Init. + Ours 74.2 59.0
ResNet-101 Imgnet. 72.5 56.8 49.5 32.9

ResNet-101 Imgnet. + Ours 82.0 69.5 75.8 61

Table 2: Transfer learning results on Cityscapes when training using self-
supervision from KITTI and from Youtube Dashcam dataset.

5 Conclusions

In this paper we have presented a self-supervised approach for learning drivable
regions from unlabeled dashcam videos. Based on experiential learning we aim
to learn about drivable areas by watching others drive. Our simple, yet effective
method makes large amounts of unlabeled training videos usable for training
standard FCNs for pixel-wise predictions. Playing unlabeled dashcam sequences
backwards in time and tracking patches the other cars have driven over allows us to
gather large amounts of self-supervision which can be successfully leveraged by an
FCN. For comparison and reproducibility, we train and evaluate on both KITTI
and Cityscapes datasets obtaining competitive results for zero-shot learning
tasks, where no ground-truth labeled image samples are provided for training. In
addition, we introduce a novel dataset of dashcam sequences from YouTube where
we collected self-supervision from 100000 frames and show that we can obtain
valuable self-supervision from such an unconstrained source of video. The results
obtained by the proposed approach show that powerful pixel-wise predictors of
drivability can be learnt from large unlabeled video collections and demonstrate
the potential of adding this rich, previously inaccessible resource to supervised
FCN learning.
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