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Abstract. This contribution proposes a compositional approach to vi-
sual object categorization of scenes. Compositions are learned from the
Caltech 101 database1 and form intermediate abstractions of images that
are semantically situated between low-level representations and the high-
level categorization. Salient regions, which are described by localized fea-
ture histograms, are detected as image parts. Subsequently compositions
are formed as bags of parts with a locality constraint. After performing
a spatial binding of compositions by means of a shape model, coupled
probabilistic kernel classifiers are applied thereupon to establish the final
image categorization. In contrast to the discriminative training of the cat-
egorizer, intermediate compositions are learned in a generative manner
yielding relevant part agglomerations, i.e. groupings which are frequently
appearing in the dataset while simultaneously supporting the discrimina-
tion between sets of categories. Consequently, compositionality simplifies
the learning of a complex categorization model for complete scenes by
splitting it up into simpler, sharable compositions. The architecture is
evaluated on the highly challenging Caltech 101 database which exhibits
large intra-category variations. Our compositional approach shows com-
petitive retrieval rates in the range of 53.6±0.88% or, with a multi-scale
feature set, rates of 57.8 ± 0.79%.

1 Introduction

Automatically detecting and recognizing objects in images has been one of the
major goals in computer vision for several decades. Recently, there has been
significant interest in the subfield of object categorization, which aims at recog-
nizing visual objects of some general class in scenes. The large intra-category
variations which are observed in this setting turn learning and representing
category models into a key challenge. Therefore, common characteristics of a
category have to be captured while simultaneously offering invariance with re-
spect to variabilities or absence of these features. Typically, this problem has
been tackled by representing a scene with local descriptors and modeling their
configuration in a more or less rigid way, e.g. [1, 2, 3, 4, 5, 6, 7, 8].
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Overview over the Compositional Approach to Categorization: This
contribution proposes a system that learns category-dependent agglomerations
of local features, i.e. localized histograms, and binds them together using a shape
model to categorize scenes. It is evaluated on the challenging Caltech 101 image
database and shows competitive performance compared to the current state of
the art. Our approach has its foundation in the principle of compositionality [9]:
It can be observed that in cognition in general and especially in human vision (see
[10]) complex entities are perceived as compositions of comparably few, simple,
and widely usable parts. Objects are then represented based on their components
and the relations between them. In contrast to modeling the constellation of parts
directly (as [4]), the compositionality approach learns intermediate groupings of
parts—possibly even forming a hierarchy of recursive compositions [11]. As a
result compositions are establishing hidden layers between image features and
scene categorization [7]. We do however restrict our system to a single layer
of compositions as this already proves to be complex enough. The fundamen-
tal concept is then to find a trade-off between two extremes: On the one hand
objects have high intra-category variations so that learning representations for
whole objects directly becomes infeasible. On the other hand local part descrip-
tors fail to capture reliable information on the overall object category. Therefore
compositions represent category-distinctive subregions of an object, which show
minor intra-category variations compared to the whole object and turn learning
them into a feasible problem. As a result the description length of the intermedi-
ate compositional representation is reduced. Therefore we propose methods for
both, learning a set of compositions and establishing image categorization based
on compositions detected in an image. The underlying training is conducted in
a weakly supervised manner using only category labels for whole images.

Learning compositions is then guided by three modeling decisions: (i) Firstly,
it has to be determined which parts to group to form potential candidate compo-
sitions. Here we follow the principles of perceptual organization [12]. (ii) Secondly,
we aim at learning a fairly small set of compositions (currently 250) so that es-
timating category statistics on the training data becomes feasible. Therefore,
the system cannot afford to learn compositions that are observed only rarely
in the visual world. As an approximation on the training set we cluster poten-
tial composition candidates and estimate the priors of the different composition
prototypes. (iii) Thirdly, each composition should be valuable for the task of dis-
criminating sets of categories from another—not necessarily one category from
all others. Compositions representing background that is present in many differ-
ent categories or compositions that are only present in individual instances of a
category are to be discarded. This discriminative relevance of a composition is
estimated by the entropy of the category posterior distributions given the com-
position. Finally, the priors of composition prototypes and the entropy of the
category posterior are combined in a single cost function. Based on this function
relevant compositions are selected from the set of all prototypical compositions.

Crucial Modeling Decisions and Related Work: Methods in this field dif-
fer in the way they are approaching crucial modeling decisions: Firstly, various
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local descriptors have been used. A classical way to capture image region in-
formation are appearance patches (e.g. [6, 4, 5, 3]). This method extracts image
patches, converts them to grayscale, and subsamples them. As a result limited
invariance with respect to minor variations in such patches is obtained. The re-
sulting features are clustered to acquire a codebook of typically some thousand
local patch representatives that are category specific. Another popular choice
are SIFT features [13]. These are complex edge histogram features that have
been proposed to distinguish different instances of an object class from another.
Nevertheless they have also shown to perform reasonably well in the field of cat-
egorization. The high dimensionality and the specificity of these features with
respect to individual visual realizations of an object require to cluster them into
a large codebook representation. On the other end of the modeling spectrum
are methods that compute histograms over complete images (cf. [14]). Such an
approach offers utmost invariance with respect to changes of individual pixels at
the cost of limited specificity. An approach which formulates a trade-off between
these two classical extremes has been proposed in [7]. Here local edge and color
histograms of subpatches are combined to obtain a low dimensional represen-
tation of an image patch. The lack of specificity is made up for by capturing
relations between the local descriptors. We use these localized histograms in this
contribution. Another approach that has shown to perform reasonably well is
that of geometric blur [8]. This descriptor weights edge orientations around a
feature point using a spatially varying kernel.

A second choice concerns the combination of all local features into a single
model that captures the overall statistics of a scene. On the one hand individ-
ual local descriptors in a test image are to be matched against those from a
learned model. On the other hand the co-occurence and spatial relation between
individual features has to be taken into account. Here the simplest approach is
to histogram over all local descriptors found in an image (e.g. [15]) and cate-
gorize the image directly based on the overall feature frequencies. On the one
hand such bag of features methods offer robustness with respect to alteration
of individual parts of an object (e.g. due to occlusion) at low computational
costs. On the other hand they fail to capture any spatial relations between local
image patches and have a high chance to adapt to background features. At the
other end of the modeling spectrum are constellation models. Originally, Fischler
and Elschlager [1] have proposed a spring model for coupling local features. In-
spired by the Dynamic Link Architecture for cognitive processes, Lades et al.
[2] followed the same fundamental idea when proposing their face recognizer.
Lately increasingly complex models for capturing part constellations have been
proposed, e.g. [16, 4, 5, 17]. Finally Fergus et al. [4] estimate the joint Gaussian
spatial, scale, appearance, and edge curve distributions of all detected patches.
However the complexity of the joint model causes only small numbers of parts
to be feasible. In contrast to this [6, 3] build a comparably large codebook of
distinctive parts for a single category. Leibe and Schiele [3] estimate the mean of
all shifts between the positions of codebook patches in training and test images.
A probabilistic Hough voting strategy is then used to distinguish one category
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from the background. [7] further refines this approach and groups parts prior
to spatially coupling the resulting compositions in a graphical model. Conflict-
ing categorization hypotheses proposed by compositions and the spatial model
are then reconciled using belief propagation. In this contribution we extend the
shape model underlying [7] using probabilistic kernel classifiers. Finally, Berg et
al. [8] describe and regularize the spatial distortion resulting from matching an
image to a training sample using thin plate splines.

The approaches mentioned above are weekly supervised, that is they only
need training images (showing objects and probably even background clutter)
and the overall category label of an image. The restriction of user assistance
is a desirable property for scaling methods up to large numbers of categories
with huge training sets. In contrast to this a supervised approach to finding an
object of a certain class in images is taken by Felzenszwalb and Huttenlocher in
[18]. Given example images and the object configurations present in each image
they explicitly model the appearance of a small number of parts separately and
capture their spatial configuration with spring-like connections. Similarly, Heisele
et al. [19] learn characteristic regions of faces and their spatial constellation.
They create training faces from a textured 3-D head model by rendering and
determine rectangular components by manually selecting specific points of a
face (e.g. nose). Component sizes are estimated by reducing the error of a SVM.

Finally there are two broad categories of learning methods to choose from,
generative and discriminative models. While the former aims at estimating the
joint probability of category labels and features, the latter one calculates the cat-
egory posterior directly from the data. Although discriminative approaches have,
in principle, superior performance generative models have been very popular in
the vision community, e.g. [3, 4, 20, 6, 7, 8]. One reason is that they naturally es-
tablish correspondence between model components and image features. Thereby
the missing of features can be modeled intuitively. In contrast to this [15, 21]
pursue a discriminative approach to object class recognition. To recognize faces
in real-time Viola and Jones [21] use boosting to learn simple features in a fixed
configuration that measure the intensity difference between small image regions.
Holub et al. [17] propose a hybrid approach using Fisher kernels, thereby trying
to get the best of both worlds.

The next section summarizes our compositional approach to categorization.
Section 3 evaluates our architecture on the challenging Caltech 101 database
and shows competitive performance compared to other current approaches. We
conclude this presentation with a final discussion.

2 Categorization Using Compositional Models

The model can be best explained by considering recognition, see Figure 1(a).
Given a novel image, salient image regions are detected in a first stage using a
scale invariant Harris interest point detector [22]. Each region is then described
by localized histograms [7]. In a next step a perceptual grouping of these local
part descriptors is conducted to obtain a set of possible candidate compositions.
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Fig. 1. (a) Recognition based on compositions. The three learning stages (L1–L3) which
are involved are presented in Section 2.1, Section 2.3, and Section 2.4, respectively. (b)
Learning relevant compositions (learning stage L2 from (a)), see text for details.

This grouping leads to a sparse image representation based on (probably over-
lapping) subregions, where each candidate represents an agglomeration of local
parts. Consecutively, composition candidates have to be encoded. Therefore all
detected local part descriptors are represented as probability distributions over a
codebook which is obtained using histogram quantization in the learning stage.
This codebook models locally typical configurations of the categories under con-
sideration. A composition is then represented as a mixture distribution of all its
part distributions, i.e. a bag of parts.

In a next stage relevant compositions have to be selected, discarding irrelevant
candidates that represent background clutter. The set of relevant compositions
has to be computed in the learning phase from the training data in a weakly su-
pervised manner (see Figure 1(b)). As intermediate compositional representations
should have limited description length, this learning obeys the following
rationale: (i) Firstly, we aim at a set of compositions that occur frequently in the
visual world of the categories under consideration. For that purpose all composi-
tion candidates found in all the training images are clustered and the prior assign-
ment probabilities of candidates to these prototypes are estimated. (ii) Secondly,
relevant compositions have to support the discrimination of sets of categories from
another. Clutter that is present in many different categories or configurations that
are only observed in few instances of a category are to be discarded to reduce the
model complexity. In order to find a relevance measure the category posteriors of
compositions are learned from the training data. The relevance of a composition
for discriminating categories is then estimated by the entropy of its category pos-
terior. By combining both the priors of the prototypes and the entropy, a single
cost function is obtained that guides the selection of relevant compositions.
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After discarding the irrelevant compositions from a new test image, the image
category has to be inferred based on all the remaining relevant compositions.
These compositions are spatially coupled by using a shape model similar to the
one presented in [7].

2.1 Codebook Representation of Local Part Descriptors

In order to render the learning of compositions robust and feasible, low dimen-
sional representations of local descriptors extracted from an image are sought.
We choose a slight variation of localized histograms presented in [7]. At each
interest point detected in an image a quadratic patch is extracted with a side
length of 10 to 20 pixel, depending on the local scale estimate. Each patch is then
divided up into four subpatches with locations fixed relative to the patch cen-
ter. For each of these subwindows marginal histograms of edge orientation and
edge strength are computed (allocating four bins to each of them). Moreover, an
eight bin color histogram over all subpatches is extracted. All these histograms
are then combined in a common feature vector ei.

By performing a k -means clustering on all feature vectors detected in the
training data a codebook (of currently k = 100 prototypes) is obtained. To
robustify the representation each feature is not merely described by its nearest
prototype but by a Gibbs distribution [23] over the codebook: Let dν(ei) denote
the squared euclidean distance of a measured feature ei to a centroid aν . The
local descriptor is then represented by the following distribution of its cluster
assignment random variable Fi,

P (Fi = ν|ei) := Z(ei)−1 exp (−dν(ei)) , (1)

Z(ei) :=
∑

ν

exp (−dν(ei)) . (2)

2.2 Forming Candidate Compositions

Given all detected local part descriptors in an image, our categorization algo-
rithm follows the principles of perceptual organization, i.e. Gestalt laws, to search
for possible candidates for compositions. For the sake of simplicity, the current
approach uses only the grouping principle of proximity although other agglomer-
ation strategies could be invoked: From the set of all parts detected in an image,
a subset (currently 30) is randomly selected. Each of these parts is then grouped
with neighboring parts that are not farther away than 60-100 pixel (depending
on the local scale estimate of the part mentioned in Section 2.1). Consequently
compositions sparsely cover salient image regions.

The resulting candidate compositions are then represented as mixtures of
the part distributions in (1). Let Γj = {e1, . . . , em} denote the grouping of
parts represented by features e1, . . . , em. The candidate composition is then
represented by the vector valued random variable Gj which is a bag of parts, i.e.
its value gj is a distribution over the k-dimensional codebook from Section 2.1

gj ∝
m∑

i=1

(
P (Fi = 1|ei), . . . , P (Fi = k|ei)

)T

. (3)
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This mixture model has the favorable property of robustness with respect to
variations in the individual parts.

2.3 Learning Relevant Compositions

Given all candidate compositions a selection has to be performed, retaining only
the discriminative ones and discarding clutter. Learning such compositions is
divided up into two stages, see Figure 1(b). First those groupings have to be re-
trieved which are representative for a large majority of objects observed among
the considered categories. Thereby, the system avoids to memorize compositions
that capture details of only specific instances of a category. Moreover, compo-
sitions should be shared among different categories. These concepts limit the
description length of a compositional image representation and, thereby, reduce
the risk of overfitting to specific object instances. In the learning phase the candi-
date compositions of all training images are therefore clustered (using k -means)
into a comparably large set Π of prototypes πi ∈ Π—currently 1000. Moreover,
the prior assignment probabilities of candidates to clusters, P (πi), are computed.

In a second stage those prototypes have to be selected that help in dis-
tinguishing sets of categories from another. As the system combines multiple
compositions found in one image, we do not have to solve the harder problem of
finding groupings that are characteristic for a single category. In contrast to such
an approach we pursue the robust setting of sharing compositions for multiple
categories (cf. [24]). To begin with, the category posterior of compositions has to
be estimated, i.e. the posterior of a categorization with label c ∈ L (L denotes
the set of all category labels) given a composition Γj ,

PΓj (c) := P (C = c|Γj) . (4)

This distribution is learned by training probabilistic two-class kernel classifiers on
all composition candidates found in the labeled training images. For the two-class
classification we choose nonlinear kernel discriminant analysis (NKDA)[25] and
perform a pairwise coupling to solve the multi-class problem (see [26, 25]). The
rationale behind our choice is that a joint optimization over all classes (one vs.
all classifiers) is unnecessarily hard and computationally much more costly than
solving the simpler pairwise subproblems. The combined probabilistic classifier
yields an estimate of the posterior (4) for the respective image category.

Subsequently the category posterior is used to calculate the relevance of
a composition for discriminating categories. Groupings that are present in all
categories are penalized by this idea, whereas combinations which are typical
for only a few classes are fostered. The discriminative relevance measure is then
modeled as the entropy of (4),

H(PΓj ) = −
∑

c∈L
P (C = c|Γj) log P (C = c|Γj) , (5)

which should be minimized.
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Fig. 2. Bayesian network that couples compositions
Gj using their relative location Sj , a bag of features
GI , and image categorization C. Shaded nodes de-
note evidence variables. See text for details.

Finally a cost function can be formulated that measures the total relevance of
a prototype πi. It combines the prior assignment probabilities of clusters, P (πi),
with the entropy (5),

S(πi) ∝ −P (πi) + λH(Pπi). (6)

Both constituents of the cost function should be normalized to the same dynamic
range, giving rise to an additional additive constant that can be discarded and
to the parameter λ > 0. The latter trades the occurrence frequencies of compo-
sitions against their discriminative usefulness.

A set of 250 relevant composition prototypes that is shared by all categories
can then be obtained by selecting the prototypes πi with minimal cost S(πi).
An image is then represented by retaining only those composition candidates
formed in Section 2.2 which are closer to one of the relevant prototypes than to
any irrelevant one. However, at least the best 5 candidates are retained, thereby
ensuring that images from the background category always yield a non-empty
representation.

2.4 Binding Compositions Using a Shape Model

Subsequently, all relevant compositions which have been detected in an image
are to be coupled with another using a shape model similar to that in [7]. First
we have to estimate the object location x. Therefore the positions xj of all
compositions gj are considered. Moreover, we include a composition gI of all
parts ei in the image, i.e. a bag of features descriptor for the whole image.

x =
∑

j

xj

∑

c∈L
p(gj |c,gI) P (c|gI). (7)

The first distribution is estimated using Parzen windows and the second one
using NKDA. For training images, for which the true category is available, the
second sum collapses to only the true category c and the distribution over cat-
egories is dropped. Following [7] the composition locations xj are transformed
into shifts, sj := x − xj . Finally, the bag of features descriptor gI , the relative
positions sj , and the image categorization c couple the compositions gj with
another as depicted in the graphical model in Figure 2. Using this model, the
categorization posterior can be written as

P
(
c
∣∣gI , {gj , sj}j=1:n

)
∝ exp

[
(1 − n) log P (c|gI) +

∑

j

log P
(
c
∣∣gj, sj ,gI

)]
. (8)
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As already mentioned previously, both distributions on the right hand side are
estimated separately from the training data using NKDA. Consequently, novel
images cannot only be assigned a category label, but also a confidence in this
categorization.

3 Experiments

We evaluate our approach on the challenging Caltech 101 database consisting
of 101 object categories and a background category with varying numbers of
samples (between about 30 and 800). The dataset contains the full spectrum of
images ranging from photos with clutter to line drawings. However, there are only
limited variations in pose. Subsequently, the retrieval rate is to be computed. As
categories are having different sample sizes, we average over the retrieval rates
that are measured for each category individually, thereby avoiding a bias towards
classes with more images. Berg et al. [8] have calculated a reasonable baseline
performance of 16% using texton histograms. Moreover their approach which is
based on shape correspondence achieved a classification rate of 48%. Using a
constellation model Fei-Fei et al. performed at about 16%. Finally, Holub et al.
[17] extend the generative constellation model approaches with a discriminative
method and a fusion of several interest point detectors to achieve 40.1%.

Baseline Performance Without Compositions: Object categorization is
based on an intermediate compositional image representation in our approach.
The following experiments estimate a baseline performance of the system with-
out this hidden representational layer. Therefore we neglect all compositions and
consider only the bag of features representation gI of the whole image, intro-
duced in Section 2.4.

The basic evaluation scenario is as follows: For each class up to 50 training
images are randomly selected (the coupled classifiers are weighted to compensate
for the unequal priors) and the remainder is taken as test set (minimally 10
images in a class and over 4000 in total). To estimate the retrieval rate and its
error 5-fold cross-validation is performed, i.e. the same algorithm is applied to
5 different training and test set compositions. Figure 3(b) shows the resulting
category confusion table for the case of a feature bag which consists of 100
prototypes. This simple model achieves a retrieval rate of 33.3 ± 0.9%.

To evaluate its dependence on the size of the codebook from Section 2.1 the
simple bag of features approach is now evaluated with different numbers of clus-
ters. Figure 3(a) shows the retrieval rates under varying model complexity. In
the case of 1000 prototypes this model yields a retrieval rate of 38.4 ± 1.3%.
Compare this with the maximal performance of 29% that [17] obtain with their
discriminative method on the basis of a single interest point detector (like our
simple model presented in this section) and the 40.1% of the combination of all
three detectors. As the localized histograms are fairly low-dimensional descrip-
tors, comparably small codebooks do already yield considerable retrieval rates.
This is advantageous for modeling compositions robustly which are obviously
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Fig. 3. (a) Retrieval rates for a bag of features approach with codebooks of different
sizes. (b) Category confusion table for a bag of features approach with 100 prototypes.
The retrieval rate is 33.3 ± 0.9%.

consisting of fewer parts than a complete image and justifies our choice of a 100
prototype representation in the full compositional architecture.

Categorization Performance of the Compositional Model: Subsequently,
the full compositional model is learned to categorize images. Evaluation under
5-fold cross-validation yields a retrieval rate of 53.6 ± 0.88% which compares
favorably with the 48% of Berg et al. [8]. Additionally, we note that the overall
retrieval rate per image without averaging over categories is 67.3± 2.1%. Figure
4(a) depicts the respective category confusion table. When comparing this plot
with the one for the simple bag of features approach from above it is evident
that the number of incorrectly classified images has significantly decreased. The
categories with lowest performance are “octopus”, “wildcat”, and “ant”, the best
ones are “car”, “dollar bill”, and “accordion”. Amongst the off-diagonal elements
the confusions “water-lilly” vs. “lotus”, “ketch” vs. “schooner”, and “lobster”
vs. “crayfish” are the most prominent ones. All of these confusions are between
pairs that are either synonymous or at least semantically very close. To con-
clude, the observable gain in resolving ambiguities between classes emphasizes
the advantage of an intermediate compositional image representation in contrast
to a direct categorization.

Evaluating Compositions: The following evaluates the relevant compositions
that have been learned. Firstly, Figure 4(b) plots the number of parts that are
typically grouped to form a composition. On average there are approximately
57 parts coupled together. This is a significant increase compared to the tuple
groupings formed in [7].

The next experiment intends to visualize the learned compositions. Since
these are agglomerations of localized histograms that cannot be displayed
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Fig. 4. (a) Category confusion table of the compositional model. The retrieval rate is
53.6 ± 0.88%. (b) Distribution of the number of parts assigned to each composition.

directly an indirect method has to be pursued. We therefore plot image regions
from the test images that have been detected to contain a specific composition.
A displayed region is then simply the rectangular hull of all parts that have
been agglomerated to a composition. As space in this paper does not permit to
present the full set, Figure 5 visualizes a subset of all learned compositions by
showing 3 candidate regions for each. The zones are therefore scaled to equal
sizes. Observe that compositions are reflecting quite different, abstract concepts:
There are those that nicely correspond to salient structures in a single cate-
gory Figure 5(a)-(c). In the latter case there are however also representatives
from another category (motorbike) that show a visually similar pattern. Figure
5(d) and (e) exhibit more extended feature sharing. In (d) the triangular struc-
tures of airplane rudders and schooners are captured, while (e) combines sails
of different boat categories and butterfly wings. The composition in (f) grasps
roundish, metallic structures and (g) elongated, repetitive patterns of windsor
chairs and menorahs. The next two compositions are an example of textures.
The latter however also seems to model the presence of sharp edges, while (j)
captures characteristic contours of pianos and staplers. An example for drawings
is given in (k), while (l) seems to model the abstract concept of feet of chairs,
pianos, and insects. In conclusion various kinds of low level properties are com-
bined to represent fairly abstract concepts that help to discriminate between
categories.

Localizing Object Constituents: Subsequently the relevance of individual
compositions for the task of categorizing an image is to be evaluated. Therefore,
the relevant object constituents are to be identified and localized. We measure
how the categorization performance varies when a single composition is removed.
Relevance is then proportional to the decrease in categorization probability of
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Fig. 5. Visualization of compositions: The pictures show the rectangular hulls of test
image regions associated with different compositions. Different, abstract concepts cap-
tured by compositions: (a) Parts of faces, (b) accordions, and (c) cars, motorbikes.
Feature sharing for complex structures of airplanes and schooners in (d), and of boat
sails and butterfly wings in (e). (f) roundish structures. (g) elongated patterns of chairs
and menorah. (h), (i) texture with and without a sharp edge, respectively. (j) contours.
(k) drawings. (l) feet of chairs, pianos, and insects.
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Fig. 6. Relevance of detected compositions (black boxes). Brighter patches than back-
ground indicate high relevance, darker ones indicate compositions are not useful.

the true category. Figure 6 shows examples for the airplane category. It is obvious
that especially the noses and rudders are particularly relevant.

4 Discussion and Further Work

In this contribution we have successfully developed an architecture for categoriz-
ing scenes based on compositional models that are automatically learned. This
intermediate, semantic abstraction layer has been shown to yield competitive
performance compared to other current approaches on challenging test data.

Currently we are extending the system to incorporate multiple scales and
hierarchies of compositions. The multi-scale extension alone, which incorporates
additional features extracted on half the original scale, has boosted the retrieval
rate to 57.8 ± 0.79%. Therefore we consider these system design decisions as
a promising direction to further increase the robustness of our compositional
model.
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