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ABSTRACT

We present a template-based detector for gestures visualized
in legal manuscripts of the Middle Ages. Depicted persons
possess gestures with specific semantic meaning from the per-
spective of legal history. The hand drawn gestures exhibit no-
ticeable variation in artistic style, size and orientation. They
follow a distinct visual pattern, however, without any perspec-
tive effects. We present a method to learn a small set of tem-
plates representative of the gesture variability. We apply an
efficient version of normalized cross-correlation to vote for
gesture position, scale and orientation. Non-parametric ker-
nel density estimation is used to identify hypotheses in voting
space, and a discriminative verification step ranks the detec-
tions. We demonstrate our method on four types of gestures
and show promising detection results.

1. INTRODUCTION

We present an automatic method to find gestures in the illus-
trations of medieval manuscripts. Our focus on gestures in
the visual arts of the Middle Ages is the first step in a long-
term interdisciplinary project to gain deeper insight into the
nature of embodied communication in medieval culture [15].
We base our approach on four illustrated manuscripts of Eike
von Repgow’s Mirror of the Saxons. The detector described
in this paper lays the groundwork to compare corresponding
scenes from each copy automatically with regard to the de-
picted gestures.

Our goal is to detect multiple types of gesture at differ-
ent scales and orientations in the digitized manuscripts. The
fact that the gestures are drawn by hand introduces a signif-
icant challenge due to artistic variation. A positive aspect of
these man-made images, however, is that they follow simple
2-D patterns without perspective. We take advantage of this
drawing style with a template driven detection strategy. Given
labeled instances of a particular type of gesture, our approach
centers on learning a subset that spans its appearance varia-
tion. We cast votes for detections based on an efficient ver-
sion of normalized cross-correlation, followed by a verifica-
tion stage to rank the hypotheses.

(a) Heidelberg manuscript excerpt

(b) Enlarged scene from the Heidelberg ms.

(c) Dresden ms. (d) Wolfenbüttel ms.

Fig. 1. Excerpts from the Mirror of the Saxons. (a) is a cropped page
from the Heidelberg manuscript; (b) zooms into a scene. (c) and (d)
show the same scene in the Dresden and Wolfenbüttel versions.

The high significance of the Mirror of the Saxons stems
from its outstanding relevance to medieval cultural history.
Composed ca. 1220–1235, Eike’s text is one of the oldest
prose works written in German and, most notably, the earliest
German vernacular law book and thus one of the most impor-
tant monuments in the history of German law [8]. Only four
illustrated versions remain, each named after its present loca-
tion: Heidelberg, Dresden, Wolfenbüttel and Oldenburg [14].
The manuscripts were written, drawn and tinted between
ca. 1300 and 1370. A few excerpts can be seen in Fig 1.
Along with the illuminated manuscripts of the Corpus Iuris
Civilis and the Decretum Gratiani, they constitute the most
famous pictorial heritage of the medieval history of law.

Interaction and communication between persons depicted
in the manuscripts is based on characteristic postures of arms,
hands or even single fingers. The gestures play a particularly
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(a) pointing (b) swearing (c) speaking-b (d) speaking-f

Fig. 2. Examples of gestures from the Heidelberg manuscript. No-
tice that pointing (a) and swearing (b) differ by only a finger. The
two speaking gestures are drawn with a back (c) or front (d) view.
We demonstrate our detection system on this set of gestures.

important role to researchers of symbolic communication in
medieval legal culture [7]. Figure 2 displays a few gestures
commonly seen in the manuscripts. To reason about the se-
mantic function of these gestures, it is essential to analyze
their historical origin and usage in a detailed, systematic and
comparative way. Beyond that, it is necessary to character-
ize and distinguish the specific handling of gestures by the
draftsmen of the different manuscripts. Therefore, art histori-
cal analysis will benefit from the comparisons systematically
generated by detection algorithms.

Reliable detection of objects in images depends on a
good shape representation. Recent works in computer vi-
sion represent object shape as a collection of local fea-
tures [1, 2, 11], parameterized contours [6], and summaries of
oriented edges [4]. Some of the more successful approaches
learn organized groups of these features [5, 9, 12, 18]. Object
templates, on the other hand, offer a dense representation of
shape [3, 10, 13, 17], and are particularly effective on objects
with a standard configuration, such as faces [16].

Lately, template matching has received less attention. One
reason is the availability of sophisticated learning algorithms
able to explain the variation of object shape in terms of re-
lationships between local features. With templates, relation-
ships of local structure in an image are fixed. This inhibits
the ability to learn generalized parts at the class level. How-
ever, templates encode a strong representation of small details
that distinguish the object from background and avoid prob-
lems of local self-similarity. For our application, we want
to detect a repeated and detailed pattern drawn by an artist,
e.g., the shape of a hand with fingers in a particular configu-
ration. Feature-based approaches become either intractable or
susceptible to clutter and self-similar confusion when repre-
senting detailed shape at high-resolution. Thus, we choose to
work with an augmented set of templates that accommodate
gesture variation. We start with a description of the detection
process, then briefly go over how we build the template set
and the verification stage.

2. DETECTION

We build our detector from a learned set of templates repre-
senting the extent of a gesture’s appearance. For each of the
templates in this set, we collect their correlation responses to
a query image in a Hough accumulator over position, angle
and scale. We then search for a set of strong peaks and run

a discriminative verification stage that ranks the detections.
Later, we compare against using a simpler version of the al-
gorithm with fewer or randomly selected templates to show
that understanding the variability of the template is key. We
first describe the template detection and voting strategies fol-
lowed by a brief overview of the verification step.

2.1. Template voting

We begin with set of templates t1, . . . , tNt that capture the
appearance variation of a gesture. For a query image f , we
apply normalized cross-correlation. The responses are cast
as votes into a Hough accumulator over position. The corre-
lation is computed with the mean ¯f
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The numerator is a standard convolution and can be computed
efficiently using the Fourier Transform. The denominator,
however, poses more of a challenge.

The template standard deviation s
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but s
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It can, however, be efficiently computed with integral images
of f and its square [10]. For each position, we use the inte-
gral image to look-up the (squared) sum under the area of the
template, denoted f
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and f2
t

. Then we have
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We can now efficiently compute the Hough vote. More-
over, we can leverage the Fourier Transform to include a pyra-
mid of weighted Gaussian blur g1
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To detect gestures at various orientation and size, we dis-
cretize the angle and scale of templates. Specifically, for a
given angle � and scale �, we transform the templates by
T�

�

, cross-correlate them with (5) and apply a relatively small



Fig. 3. Subset of pointing gestures with the largest projection on the
principle components. The middle row shows their LoG responses
to eq. (7); these are the detection templates. The bottom row gives
the first seven principle components from left to right.

threshold ⇢, summing the result. Thus, we define the full ac-
cumulator over gesture position, orientation and scale as
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The thresholded position accumulator ˆh reduces the additive
effect of small amounts of noise.

We apply a Gaussian kernel density estimator to H(·)
to get a non-parametric distribution over voting space. The
modes in this density need not be isotropic and can accom-
modate some details of the gestures we have not parameter-
ized, e.g., aspect ratio. Detection hypotheses are identified by
simply searching for local maxima in the discrete density. We
keep a number of top scoring hypotheses for each image.

2.2. Hypothesis ranking

The scores from the template detector are normalized with
respect to each image, so we apply a discriminative classifier
to rank the hypotheses across all images. We compute a his-
togram of oriented gradients [4] under the oriented bounding
box of the hypothesis and evaluate it with a support vector
machine. Although this verification scheme works well, eval-
uating it for even a small number of scales and orientations
over all image positions in our high-resolution data set would
be prohibitively expensive.

The hypotheses obtained from the template voting stage
may not align exactly with a strongly responding HoG fea-
ture, so we slide the oriented bounding box a few pixels in the
image and re-evaluate, taking the maximum response. The fi-
nal ranking is a probabilistic estimate based on distance to the
support vectors.

3. LEARNING

In this section we briefly describe the template selection pro-
cess and how we train the verification stage.

3.1. Templates

We extract ground-truth gestures labeled with oriented bound-
ing boxes from a set of training images. We rotate and scale
normalize them, and convolve them with the Laplacian of
Gaussian (7) to construct our set of templates,
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The resulting template pixels have both positive and nega-
tive values, and give a strong response when contours closely
align. We further scale them to sum to zero. Figure 3 shows a
few examples.

Our goal is to find a small collection of templates repre-
sentative of a particular gesture’s appearance. To do this we
first compute the principle components U on the set of gesture
templates. We then find the subset with the largest projection
on the first N

k

principle components using z
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=

P
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T
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u
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We select the templates with the N

t

largest values of z
i

.

3.2. Verification

An SVM for verification is trained in two steps. First, we
use positive examples of a targeted gesture and negative ex-
amples of the other gestures. We then randomly sample de-
tection windows in the background of the training images for
negative examples and record false positives. The SVM is re-
trained with the gestures and background samples for the final
detector. We use an RBF kernel and find its parameters using
5-fold cross-validation on the training set.

4. RESULTS AND DISCUSSION

Our ground-truth data set comprises 280 high-resolution
scenes from the Heidelberg manuscript. Together, the scenes
contain 347 gestures labeled with oriented bounding boxes,
each roughly 200 ⇥ 100 pixels. We evaluate the detector
with a leave-one-out strategy; we hold out one scene from
the manuscript for testing and train on the remaining scenes.
We do this for each of the four gesture types in Figure 2. We
follow the VOC criteria for correct detections: A\/A[ � 0.5.

The detector is configured as follows. Test images and
templates are filtered with �g

�=1.5. Both N
t

and N
k

are set
to 10. The number of Gaussians N

g

is 60 with gn
�2(0,6]. The

weights w for each Gaussian are uniform; we have not ex-
tensively experimented with other values. For voting, we set
⇢ = 40 and discretize x, y,�,�-space into 512

2 ⇥ 30 ⇥ 10

bins. The angle and scale ranges are estimated from training
data. Kernel bandwidth is 5 bins over x, y and 1 for �,�. We
limit the number of ranked hypotheses per image to 100.

Precision-recall curves for the detector on four gestures
are shown in Figure 5. As a baseline comparison, we evalu-
ated the detector using a single template selected at random
against one and five templates with maximum projection on
the principle components. Table 1 shows our detection rate
and recovery of the ground-truth orientation statistics.

These results show that a small set of templates can cap-
ture the primary variation of a gesture and be effective for de-
tection. We further report that about 75% of all the gestures
were detected with 1 false positive per image. We plan to con-
tinue this work by evaluating the detector on other versions of



Fig. 4. Example detections of the four gesture types (rows). The ground-truth labels are marked red and the detections are blue. The rightmost
column shows a false positive for each gesture. Notice how the false positives for the speaking gestures are semantic mistakes.

N � ± b
N

b
�

b±

pointing 98 314.0 17.5 86 317.9 15.7
swearing 99 341.7 14.7 82 344.2 13.3
speaking-b 77 171.7 18.1 67 176.8 15.8
speaking-f 73 226.1 25.0 69 227.7 13.9

Table 1. Gesture frequency N , mean orientation �, and angle stan-
dard deviation ± in the ground-truth data. The detected gesture
statistics (b· ) are all very close to the ground-truth. The angles are
measured in degrees, clockwise from the x-axis.

the Mirror of the Saxons and automating a comparative anal-
ysis of legal gestures used in medieval manuscripts.
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