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Supporting information A: Methods 1

In the following we provide additional details on all components of the iterative learning procedure that allows to train a 2

cuneiform sign detector as summarized in Algorithm 1. 3

Algorithm 1: Weakly Supervised Iterative Training of Cuneiform Sign Detector
Input: L: Line detections; I: Tablet images; T : Transliterations; [Bmanual: Manual sign annotations]
Output: D: Cuneiform sign detector
Bplaced ← ∅; Braw ← ∅; Baligned ← ∅ // Initialize placed, raw and aligned sign detections
Aline ← ∅; Asign ← ∅ // Initialize line-level and sign-level alignment information

Iterative Learning:
repeat

1. SIGN PLACEMENT // Sect. A3
if first iteration then

Bplaced ← LocalizeAllSigns(T , L)
else

Bplaced ← LocalizeUnalignedSigns(T , L, Baligned, Aline, Asign)

2. SIGN DETECTOR TRAINING // Sect. A4
D ← TrainNewSignDetector(I , Baligned ∪Bplaced, L)
if Bmanual is available then

D ← FineTuneSignDetector(D, I , Bmanual) // semi-supervised case
Braw ← RunSignDetection(D, I)

3. IMAGE-TRANSLITERATION ALIGNMENT // Sect. A5 (line-level); Sect. A6 (sign-level)
Aline ← OptimizeLineLevelAlignment (T , L, Braw)
[Baligned, Asign]← OptimizeSignLevelAlignment(T , L, Aline, Braw)

until D is converged

4

A1 Iterative Training with Weak Supervision 5

Before the start of the iterative training, the line segmentation network is trained on a small set of labeled tablet images 6

and applied to all tablet images of the train set in order to obtain line detections (Sect. A2). The iterative training generates 7

in each iteration a new set of aligned and placed detections that is used to supervise the training of the cuneiform sign 8

detector (Sect. A4). The iterative training, summarized in algorithm 1, proceeds as follows: 1) Sign placement produces 9

placed detections using transliteration and line detections in the first iteration and later also incorporating aligned detections 10
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(Sect. A3). 2) We train a new sign detector on the union of aligned and placed detections, and fine-tune it on manual sign 11

annotations if available (Sect. A4). 3) We apply the trained sign detector to the Train TL set (unlabeled tablet images) and 12

use the line and sign detections to find an image-transliteration alignment on line-level (Sect. A5). Then for each line we 13

find a sign-level alignment between sign detections and transliteration vector in order to produce a set of aligned detections 14

(Sect. A6). The iterative training of steps 1-3 is repeated until the performance of the sign detector stops improving. The 15

fine-tuning step is the only difference between the weakly and semi-supervised case of our learning approach. 16

A2 Line Detection 17

Our line detection consists of two steps: 1) Line segmentation with a convolutional neural network (CNN) and 2) Hough 18

transform-based post-processing to obtain line detections. For line segmentation we train a CNN to classify image patches as 19

line center or background. During training we sample image patches close the boundary of line annotations more frequently, 20

thus focusing the classifier training on hard-positive and hard-negative cases. At test time, we obtain a segmentation map of 21

the full image by turning the classifier into a fully-convolutional network. As CNN architecture we use a modified AlexNet 22

[1] with BatchNorm after convolutional layer 3-5 and only one linear layer with 512 neurons before the classification head. 23

As training data for the line segmentation network (line center classifier), we manually annotated all visible lines of cuneiform 24

script in 38 segmented views of clay tablets. In total we obtain 410 annotated lines of cuneiform script for training. A line is 25

annotated as a sequence of connected linear segments (piece-wise linear segments) by marking points on the line: the start, 26

the end, and points in between to cover curved text. Most line annotations consist of four linear segments (five points). 27

For robust line detection, we post-process the line segmentation using the straight line Hough transform [2]. By identifying 28

the peaks in the Hough transform, we obtain votes for the presence of lines in the tablet image. We expect lines on the same 29

tablet to be similar oriented and have a minimum distance to each other, therefore we require detected lines to be close in 30

orientation (+/- 3 degree), but far enough apart vertically (minimum 50 pixels). We use the median angle of all lines (peaks in 31

Hough transform) that we find in a first run in order to re-focus the line search on a tighter range of line orientations in a 32

second run and thus avoid outliers. Further, we merge lines if they intersect or are almost parallel. Finally, detected lines are 33

associated with their segmentation mask which can provide additional information. 34

A3 Sign Placement Method 35

In the first iteration of iterative learning, the sign placement hypothesis (placed detections) is purely created from line 36

detections and sign size statistics, and thus, serves as initial training data for the cuneiform sign detector. In later iterations, 37

the sign placement method additionally leverages aligned detections in order to localize unaligned transliterated signs with 38

higher precision. 39

To generate the initial placed detections, we first align transliteration lines with detected lines by matching them in a greedy 40

fashion from top to bottom, i.e. the first translation line is assigned to the first detected line etc. If aligned detections are 41

available, we rely on the assignments of the line-level alignment method as described in Sect. A5. 42

Having solved the line-level alignment, the placed detections are generated line by line. For the sign placement method, a line 43

is defined as the linear segment between a start and end point, which are localized in the tablet image with help of the line 44

detections and its segmentation mask. If aligned detections are available, they provide additional reference points for sign 45

placement besides the start and end of a detected line. Aligned detections effectively split a full line into smaller individual 46

line segments of unaligned transliterated signs whose start and end points are the respective borders of the bounding box of the 47

aligned detections. Knowing start and endpoint of a line segment, we place the center points of corresponding transliterated 48

signs on the line so that they span the full length of the line. The bounding box size of each placed detection is estimated 49

in the following way: The sign height is estimated from the average line distance in the tablet image. Since sign widths 50

strongly vary across sign code classes, we compute the sign width by multiplying a class-specific normalized sign width from 51

a pre-computed sign size statistic with the sign height. We collect the sign size statistic by measuring the relative length and 52

width of sign characters in a realistic cuneiform Unicode font [3]. 53

If aligned detections are available, we additionally filter the resulting placed detections twofold in order to increase their 54

precision: 1) Placed detections that are more than three signs distant from the nearest line start or end point (e.g. aligned 55

detection) are ignored. 2) Placed detections are only included, if at least two aligned signs are present in their line. 56

A4 Sign Detector Training 57

We implement the SSD detector [4] with default boxes that cover four aspect ratios (3/5, 1/1, 2/1, 3/1) and three scales (1, 58

1.26, 1.59) that are adjusted for the various shapes of cuneiform signs. During training we use online hard-negative mining as 59

described in [4] which maintains an one-to-three ratio of positive and negative boxes by keeping only the hardest negatives. 60
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Similarly, we follow in their choice of loss functions by using a cross-entropy loss for the classification head and a smoothed 61

L1 loss for the bounding box regression head. In the implementation of the feature pyramid network, we deviate from [5] and 62

only detect cuneiform signs across two feature scale levels that assume signs to fit in a window (anchor box) of 128×128 or 63

256×256 pixels, respectively. We do not search for cuneiform signs across all feature levels, since after pre-processing tablet 64

images are resized to match a sign height of 128 pixels as described in Sect. A7. 65

When training the sign detector, we always pre-train the backbone network on the simpler task of sign code classification 66

and then use the pre-trained backbone as initialization for detector training. For this pre-training the backbone network is 67

extended with an average pooling layer, followed by a liner layer with as many neurons as classes and a softmax function 68

that provides class predictions. The training of the sign code classifier on the generated sign annotations from our weakly 69

supervised approach is performed like training on supervised data, in contrast to the weakly supervised training of the sign 70

detector. 71

Standard training of an object detector requires fully annotated images, however, the placed and aligned detections only 72

cover a subset of all visible signs in tablet images. We use the line segmentation mask to prevent the incorrect labeling of 73

foreground bounding boxes as background (false negatives) and to include many true hard negatives found at the border of 74

the mask for training. In particular, bounding boxes are ignored, if both of the following conditions hold true: 1) The box 75

center is located on a segmentation mask of a detected line, and 2) the maximum intersection-over-union (IoU) with any 76

aligned detection box is in the range [0, 0.35). For all other boxes the standard rules for detector training apply. 77

After training on weakly-supervised data, the sign detector can be fine-tuned on manual sign annotations which represents 78

semi-supervised training. Annotated bounding boxes provide accurate sign localization also in difficult cases and thus 79

mitigate the problem of localization drift as shown in Fig. F. If all signs in an image are annotated, no masking based on the 80

line segmentation is required which further increases the quality of hard negatives available for training. 81

A5 Line-level Alignment 82

Given the detected lines in the tablet image and the lines in the transliteration, the goal is to find the correct line-level 83

alignment. This optimization is necessary because of errors in line detection (e.g. false positives) and the discrepancy 84

between tablet image and transliteration (e.g. transliteration contains signs that are not visible in image and vice versa). 85

We draw inspiration from the sentence alignment problem in natural language processing, and thus adapt the Bleualign 86

algorithm [6] which formulates the alignment problem (for sentences in text a and its translation b) as a longest path search. 87

For all combinations of detected lines and transliteration vectors (transliterated lines), an alignment score is computed and 88

stored in a score matrix. The rows and columns of the score matrix correspond to detected lines and transliterated lines sorted 89

by line number in descending order. We construct a directed grid graph G in the size of the score matrix, where diagonal 90

edges resemble “matches” and horizontal or vertical edges “skips”. The alignment is obtained by optimizing the path in 91

G from the upper left to the lower right node. The alignment scores from the score matrix define the cost of matches and 92

skips implied by the selected path. Since G is a direct acyclic graph (DAG) with positive edge weights the optimization is 93

performed in linear time using the topological sort algorithm. 94

The original Bleualign algorithm makes use of a machine translation system to map a source sentence into the language of 95

the target sentence, before computing their BLEU [7] score as alignment score. In the case of line-level alignment we need to 96

associate a detected line in image-space with a transliteration vector in sign-code-space. For each detected line we identify a 97

line-specific subset of the raw detections by selecting only detections close to the detected line (less than half the average 98

line distance). When we sort the remaining sign detections according to their horizontal position to obtain the predicted 99

transliterated line in sign-code-space for which we can compute a matching score. 100

Besides the BLEU score, we consider alternative alignment scores that are not only dependent on the output of our sign 101

detector, but also incorporate geometric constraints. In particular we derive a score from the result of the sign-level alignment 102

method which we describe in following Sect. A6. Having computed paths from two different score matrices, we take the 103

intersection of both paths in order to retain the most robust line-level alignment. 104

A6 Sign-level Alignment 105

For a given the line-level alignment between a detected line and its corresponding transliteration, the goal of sign-level 106

alignment is to find an assignment between the raw detections in the tablet image and the signs in the transliteration vector. 107

We follow the idea of part-based graphical models [8] and build a conditional random field (CRF) model for a line, whose 108

underlying graph structure is determined by the transliteration vector. 109

Formally, we represent the transliteration vector T with n signs as a fully connected graph G = (V,E) as shown in the 110

example in Fig. A. Each node a ∈ V we associate with a sign ta ∈ T in the transliteration and a random variable Xa that 111
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Pairwise potentials

detection score 𝜃𝑖𝑎, 
offset initial hypo 𝜃𝑖𝑏

Unary potentials

Figure A: The conditional random field (CRF) has a fully-connected graph which models appearance and geometric constraints of a line.
Each random variable (circled number) represents a sign in the transliteration (this figure shows the graphical model for a transliteration of
five signs). There are unary potentials for each variable depending on detection score and offset from a initial sign hypothesis. Connections
between variables describe pairwise potentials that enforce geometric constraints found in a line like angle, overlap and distance between
signs. The distance potential (green connections) only affects connections of neighbouring signs.

takes values xa ∈ Ca, where Ca is the set of detections of sign code class ta. Additionally Ca includes a candidate ε that 112

indicates a sign that could not be aligned. The alignment of a transliteration with sign detections is then given by the vector 113

x = (xa)a∈V ∈ Cn, where we use Cn to describe the set of all possible alignments (ie. assignments to all random variables). 114

The energy function E : Cn −→ R of the CRF maps any alignment to a real number. The function E(·) is defined as the sum 115

of all unary θU (·) and pairwise potential terms θP (·, ·) as follows: 116

E(x) =
∑
i∈V

θUi (xi) +
∑

(i,j)∈E

θPij(xi, xj) (1)

The unary terms θa, θb take into account the detection confidence and the offset from an initial sign hypothesis respectively, 117

and are combined using weights λa and λb as follows: 118

θUi = λaθ
a
i + λbθ

b
i (2)

The pairwise terms θm, θn, θo constrain the overlap between sign detections, distance between bounding boxes as well as 119

angle between signs and detected line respectively, and are combined using weights λm, λn and λo as follows: 120

θPij = λmθ
m
ij + λnθ

n
ij + λoθ

o
ij (3)

Unary terms For detector confidence we define the unary term θai (xi) = exp((1− score(xi))/σa)− 1, where score(·) 121

returns confidence of the assigned detection. For the offset from the initial sign placement hypothesis we define the unary 122

term θbi (xi) = hypodist(xi)), where hypodist(·) returns the euclidean distance between the estimate position of the sign 123

from the initial hypothesis and the location of the assigned detection. We initial sign hypothesis is generated by the sign 124

placement method described above. 125

Pairwise terms For the overlap between sign detections we define the pairwise term θmij (xi, xj) = exp(iou(xi, xj)/σm)− 126

1, where iou(·, ·) computes the intersection-over-union between the bounding boxes of the assigned detections. For the 127

distance between bounding boxes we define the pairwise term θnij(xi, xj) = exp(boxdist(xi, xj)/σn)−1, where boxdist(·, ·) 128

computes the distance between the bounding boxes of the assigned detections. The potential is only nonzero for connections 129

between neighbouring signs (green connections in Fig. A). For the angle between signs and detected line we define the 130

pairwise term θoij(xi, xj) = exp(angle(xi, xj)/σo)− 1, where angle(·, ·) computes the angle of the vector that connects 131

the bounding boxes of the assigned detections and the vector of the detected line. 132

Outlier treatment If a random variable Xa takes on the value xa = ε, it incurs a fixed outlier penalty λp independent of 133

any neighbouring nodes. This outlier class deals with difficult alignments (e.g. no matching detection). 134

Inference After computing the unary and pairwise potentials for a given line, we use the sequential tree-reweighted 135

message passing (TRW-S) algorithm [9] to minimize the energy function in (1). The solution aligns a detections with each 136

sign in the transliteration vector except for signs that have been assigned to the outlier class. Our implementation makes use 137

of the OpenGM framework [10]. 138
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A7 Training and Evaluation 139

All neural networks of our approach are trained using a standard stochastic gradient descent (SGD) optimizer with momentum 140

0.9 and weight decay of 1e-04. The configuration of learning rates (lr) and other parameters is described in the following. 141

Pre-processing of Tablet Images First, we convert all tablet images to gray-scale and compute line detections using our 142

method. Then we resize the tablet images so that the height of a cuneiform sign is about 128 pixels. We obtain the necessary 143

scaling factor for each tablet image by estimating the average sign height. We approximate the average sign height with the 144

average distance between detected lines. If there is a transliteration available, we also estimate upper and lower bounds for 145

the sign height in the table image by dividing the tablet image height by the number of transliterated lines and by dividing the 146

tablet image width by the length of the longest transliterated line respectively. If the estimated sign height is out of bounds, 147

we use the nearest bound instead. To refine the line detections and sign height estimates, we re-run the steps of pre-processing 148

once on the scaled version of the tablet images. 149

Sign Code Classification The sign code classifier is trained with lr 0.01, until the train error plateaus and then lr is decreased 150

by factor 0.1. This is repeated two times. As input data 224x224 patches are randomly cropped from a sign bounding box 151

that has been context-padded to 256x256 box without altering the aspect ratio. 152

Line Segmentation The line segmentation network is trained with lr 0.01 which is decreased like in the case of sign code 153

classification training. As input data 227x227 patches are randomly cropped from 256x256 patch that is sampled following 154

the strategy describe in Sect. A2. 155

Sign Detection The sign detector is always trained for 50 epochs with lr 0.001 with online hard-negative mining as described 156

in [4]. As input data 512x512 patches are randomly cropped from a tablet image which has been split in 600x600 patches 157

that overlap by 200px. As data augmentation we use randomly resized crops with scale range [0.65, 1]. 158

Detector Fine-tuning In the case of semi-supervised training, the regular training on weakly supervised data is followed up 159

by a fine-tuning step on annotated samples. The sign detector is fine-tuned on the annotated samples for 20 epochs with a 160

reduced lr 1e-04. 161

Alignment Method The configuration of λ and σ parameters defined in Sect. A6 is shown in Table A. The values in the 162

brackets correspond to the parameter configuration of pairwise potentials between two non-neighbouring signs. Having 163

aligned detections we compute for each tablet its alignment ratio (AR), the ratio between aligned detections and signs in 164

transliteration. We only keep aligned detections from tablets with AR > 0.3 in order to focus on the most reliable alignments. 165

Evaluation In the case of sign detection, we follow the standard evaluation protocol for object detection. We use class-wise 166

non-maximum suppression (NMS) with threshold at 0.3 intersection-over-union (IoU). A detection is considered true positive 167

(TP), if the IoU between its bounding box and a ground truth box is larger than 0.5, otherwise it is a false positive (FP). Then 168

we compute the mean average precision (mAP) across all 186 sign code classes. 169

Table A: The configuration of λ and σ parameters for the sign-level alignment in Sect. A6 used for all experiments.
outlier score hypodist iou boxdist angle
λp λa σa λb λm σm λn σn λo σo
25 12 0.88 1 0.4 (1.5) 0.4 (0.05) 5 3 2 (0.2) 0.6 (0.1)

A8 Visualizing Detection Support 170

For the visualization of the sign support, we make use of the gradCAM method [11]. We visualize the feature activation 171

in the penultimate layer of our adapted MobileNet-v2 network (see Sect. A4). We use absolute values for the resulting 172

heatmap and normalize it in the range of [0, 1]. We first compute the support with respect to the predicted class pred and 173

ground truth class gt separately. Then we compute the difference of support between pred and gt with the following function: 174

min(max(pred− gt, 0), 1). 175

A9 Software and Hardware Dependencies 176

Software We implemented our approach using the PyTorch deep learning library [12]. Details regarding our implementation 177

including Python dependencies for installation are listed on the GitHub project page. 178

Hardware Training and evaluation are performed on a machine with a single GPU (we used a Gefore GTX 1080, a 179

consumer GPU). The web application demo runs on a web server without GPU support, since detection inference with a 180

lightweight MobileNetV2 backbone is fast even in CPU-only mode (less than 1s for an image with HD resolution, less than 181

10s with 4K resolution). 182
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Supporting information B: Sign Code Classes 183

We provide additional details on the different cuneiform sign code classes in our dataset. 184

B1 Sign Code Classes used for Detection 185

The cuneiform sign detector is evaluated on 186 different cuneiform sign code classes that are present in the train set and have 186

at least one annotated example in the test set. Fig. B illustrates the fine-grained nature of this detection task. The diversity as 187

well as the similarity between sign code classes is apparent by just comparing the characters printed in a Unicode cuneiform 188

font [3]. We show the cuneiform signs sorted according to their sign code as introduced in Borger’s sign listing [13], which 189

groups signs according to common substructures and similarity. Often cuneiform signs are composites of several smaller 190

signs, where the only difference between two classes is a single wedge. Besides high inter-class similarity the variation 191

between signs of the same class in real tablet images is high as well as we will illustrate in Fig. G. 192
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Figure B: Unicode characters of sign code classes considered for detector training. We show all cuneiform signs which are supported by
the Unicode font (181 out of 186).

B2 Frequency of Sign Code Classes 193

Fig. C visualizes the frequency of the 186 sign code classes in Train TL set (unlabeled tablet images with transliteration). We 194

only count an occurrence of a sign in Train TL, if it is not labeled as broken in the transliterations. The resulting frequency 195

distribution roughly follows a discrete Pareto distribution. When visualized in log-scale the exponential distribution becomes 196

a linear trend. Further we can observe that the least frequent 25 sign code classes have less than 100 occurrences, whereas the 197

most frequent 25 have more than 2000. 198
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Figure C: Plot of the (1-gram) frequency of the 186 sign code classes in the Train TL set with classes ranked according to their frequency.
In the upper plot the exponential drop in class frequency is visible, which indicates a discrete Pareto distribution. This is confirmed by the
lower plot with logarithmic scale that shows a linear trend for most of the classes.

Supporting information C: Details on Detector Performance 199

We present results on the class-wise detection performance of our iterative learning approach, analyze the false positive errors 200

of the sign detector, and show qualitative results on full tablet images as well as for individual sign detections. Moreover, 201

we compare the impact of different backbone architectures as well as ImageNet pre-training, we explore if the learned 202

representation improves sign detection of a different cuneiform script, and finally we showcase a web application of the 203

cuneiform sign detector. 204

C1 Class-wise Detection Results 205

Fig. D reports the sign detector performance on individual sign code classes evaluated on the Test set in terms of class-wise 206

average precision (AP). In contrast, the mean class AP (mAP) provides a metric for the average detector performance across 207

classes. The results are based on the sign detector that we obtain after iterative training in a semi-supervised fashion using all 208

manual sign annotations of Train BB for fine-tuning. The sign code classes are sorted according to their AP (in descending 209

order). We show every second sign code class in the Test set to provide a broad overview of the class-wise sign detector 210

performance, while not overfilling the page. 211

Since the different cuneiform signs have a strongly imbalanced class distribution (Pareto-distributed), we provide the 212

frequency of signs in the Train TL, the Train BB and the Test set. One might expect that well performing classes usually 213

belong to the group of signs that occur often in the dataset (high support). In Fig. E we analyze the correlation across the 186 214

sign classes between detector performance and the support in Train BB and the support in Train TL. We find a light positive 215

correlation for the two properties, where sign code class frequency in Train TL seems to be more important than frequency in 216

Train BB. While the sign detector seems to slightly favor more frequent signs, it still performs well for many less frequent 217

signs. 218
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Figure D: Class-wise detection results showing every second sign code class sorted according to sign detector average precision (AP) in
descending order. For each sign code class we report the following: corresponding sign code (MZL) as used in Borger’s sign lists [13],
Unicode character (Sign), frequency of occurrence in Train TL, Train BB (with bounding boxes) and Test set, as well as the corresponding
AP of the sign detector on the Test set.

Figure E: Two scatter plots studying potential correlation between performance of sign detector on individual sign code classes and their
frequency in the Train TL and their frequency in Train BB (from left to right respectively). The red curve is based on a linear regression
indicating the data trend and the number on top of each plot is the Pearson correlation coefficient.
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Figure F: False positive (FP) error analysis of sign detector on test set. In each plot the detections are ranked according to their confidence
along the x-axis (starting with highest confidence from the left). Along the y-axis the distribution of detection types (Cor: true positive,
Loc: localization error, Cls: class confusion, BG: background confusion) is visualized. Top row: All detections including true positives
(Cor). Bottom row: Only FP detections. Left column: Weakly supervised training causes a high percentage of localization errors w.r.t. all
FPs. Right column: Fine-tuning mitigates the impact of badly localized detections significantly.

C2 False Positive Analysis 219

False positive (FP) categorization provides helpful insights into the performance of an object detector. We follow the analysis 220

as introduced in [14] in order to classify false positives into three categories: Localization error (Loc), background confusion 221

(BG) and similar class confusion (Cls). Fig. F shows the false positive analysis for a sign detector on the test set evaluated at 222

two different stages of sign detector training. 223

When training the sign detector with weakly supervised data, badly localized bounding boxes can cause an increase of 224

localization error as shown in the false positive category distribution in the left column of Fig. F. The right column shows the 225

false positive category distribution of the same sign detector after fine-tuning on manual annotations. Fine-tuning results in a 226

significant decrease of localization error which is visible in the difference between the left to right column. The fine-tuned 227

detector produces a large number of true positives (TP) detections and reduces localization and background errors. The 228

similar class confusions make up the majority of detection errors due to the fine-grained differences between cuneiform signs. 229

C3 Individual Sign Detections 230

In Fig. G we plot individual true positive sign detections for two very similar-looking cuneiform sign code classes. Besides 231

the high inter-class similarity between the different columns in Fig. G, there is also a high intra-class variance visible across 232

the different sign detections of each column. Even signs of the same class and from the same tablet (same scribe) can vary 233

in appearance considerably. Multiple factors contribute to intra-class variance and are visible across the sign detections of 234

each column: Changing writing styles, overlapping signs, differences in the the clay material, illumination, orientation of the 235

tablet to the camera, and the state of conservation of each sign. The sign detector trained by our weakly supervised approach 236

is able to deal with this challenging setting and demonstrates good results on a diverse set of tablet images. 237

C4 Detection Results on Tablet Images 238

Fig. H and Fig. I visualize qualitative detection results on full tablet images that are not part of the train set after iterative 239

training (weakly supervised and semi-supervised with 745 manual sign annotations). We color-code TP and FP detections 240

using the ground truth sign annotations (bounding boxes). In Fig. H relatively few errors are visible. Errors tend to occur 241
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Figure G: True positive detections of two different cuneiform sign code classes arranged in two columns. For each column each row of
detections is obtained from a single tablet image. The blue box depicts the detected bounding box. Above each detection its confidence is
reported.

more often on the border of the tablet which is mostly due to curvature of the tablet as well as damaged or broken signs. 242

The examples in Fig. I illustrate levels of damage that are common in the SAAo dataset. Despite of this, the sign detector 243

provides robust detections and many errors correlate with badly damaged signs. 244

Fig. J and Fig. K visualize qualitative detection results on full tablet images from the test set over three iterations of weakly 245

supervised and two iterations of semi-supervised training (see main article for quantitative results of this experiment). The 246

performance improvement over the course of iterative training is clearly visible. The most prominent changes occur in earlier 247

iterations, while later changes are more subtle (e.g. improvements in localization and rare classes). 248

C5 Backbone architecture comparison 249

A deep neural network-based sign detector is composed of a backbone and a detection head network. The backbone network is 250

the core of the learned representation which is usually pre-trained on a classification task. In Fig. L we compare four different 251

backbone architectures on the task of sign code classification (with 186 classes) on our test set. The classification performance 252

of a backbone architecture provides a decent indicator for the overall detection performance [15]. All configuration have 253

been trained on the train set E using a SGD optimizer with momentum. Learning rate and training schedule have been 254

manually tuned for best performance. The network performance is reported as percentage of correctly classified signs 255

(classification accuracy). The number of learnable parameters of the backbone networks is also visualized, since this is 256

an important factor for inference speed, hardware requirements and model regularization. We compare two MobileNet-v2 257

[16] based architectures and the well-known AlexNet [1] and ResNet-18 [17] architectures. The cuneiform version of 258

MobileNet-v2 is our adapted version (see Sect. A4) used in all our experiments whereas the original version implements the 259

exact architecture of [16] with its width multiplier set to 0.75. The cuneiform version of MobileNet-v2 is by far the smallest 260

backbone architecture with about 700K parameters as plotted in Fig. L. Nevertheless it shows competitive performance when 261

compared to the other models. Using the larger original version of MobileNet-v2 improves performance. The AlexNet 262
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Figure H: Detection results on six tablet images from the test set with mostly clear cuneiform script. We only show detections with a
confidence score higher than 0.5. Yellow bounding boxes indicate true positive detections and blue bounding boxes false positive detections.
Best viewed in electronic form.

Figure I: Detection results on six tablet images from the test set with damaged cuneiform script. We only show detections with a confidence
score higher than 0.5. Yellow bounding boxes indicate true positive detections and blue bounding boxes false positive detections. Best
viewed in electronic form.
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Figure J: Detection results on full tablet images for five consecutive iterations of iterative training (starting with first iteration from left): We
only show detections with a confidence score higher than 0.2. Yellow bounding boxes indicate true positive detections and blue bounding
boxes false positive detections. Best viewed in electronic form.
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Figure K: Detection results on cropped image patches for five consecutive iterations of iterative training (starting with first iteration from
top): We only show detections with a confidence score higher than 0.2. Yellow bounding boxes indicate true positive detections and blue
bounding boxes false positive detections. Best viewed in electronic form.

architecture performs the worst, while the ResNet-18 model shows comparable performance to the cuneiform version, but 263

requiring over ten times the number of parameters. 264

C6 ImageNet dataset pre-training 265

Pre-training a backbone network on the large ImageNet dataset [18] is a common method to improve the performance on 266

different tasks with little training data. In Fig. L we investigate how well a backbone network performs on the task of 267

cuneiform sign code classification when its training is initialized with ImageNet pre-trained weights compared to when it is 268

trained from scratch. We use the same backbone architectures and training configuration as described in previous experiment. 269

Initializing the network training with ImageNet pre-trained weights results for each architecture in a 1%–5% performance 270

improvement when compared to training from scratch. This is in line with current research on transfer learning [19] that 271

finds only modest performance improvements in the case of fine-grained target domain. In addition the domain of ImageNet 272

objects is very different from the domain of cuneiform sign code classes and distinguishing them requires to learn two 273

different feature representations with little overlap. Overall ImageNet pre-training offers a small performance improvement, 274

however, it is clear that it cannot replace the sign annotations required for detector training. 275
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Figure L: Evaluation of different backbone architectures and their initialization on the task of cuneiform sign code classification. Four
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0.000
0.084

0.123

0.253

# of Old-Babylonian sign annotations used for training

m
AP

0.000

0.100

0.200

0.300

0.400

0 1505

trained from scratch fine-tuned from Neo-Assyrian sign detector

Figure M: Comparison of two ways to train a Old-Babylonian sign detector on 1505 bounding box annotations of Old-Babylonian
cuneiform. A sign detector trained from scratch is compared to one fine-tuned from a Neo-Assyrian sign detector that has been pre-trained
with our iterative learning procedure. The performance is measured on a test set made up of clay tablets from CUSAS 36 collection [20].

C7 Apply Sign Detector To Different Cuneifrom Script 276

We investigate if our approach is transferable to Old Babylonian cuneiform. Old-Babylonian shares most of the sign code 277

classes of Neo-Assyrian cuneiform, however, the majority of sign code classes is written differently. For our experiment we 278

annotated 18 Old-Babylonian clay tablets of the CUSAS 36 collection [20], of which twelve were used for training (1505 279

signs) and six for testing (591 signs). Unfortunately, the transliterations of the CUSAS 36 collection are not publicly available 280
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online at the time of writing, preventing us from employing our weakly-supervised learning strategy. Nevertheless, we show 281

that a sign detector for Old-Babylonian script can be trained successfully and that fine-tuning a Neo-Assyrian sign detector 282

on Old-Babylonian significantly improves the performance. This demonstrates that our sign detector take advantage of the 283

close relationship between different cuneiform scripts. 284

We make use of the same training protocol as established for Neo-Assyrian cuneiform. First we train the Neo-Assyrian 285

detector from scratch using only the sign annotations available in the train set. Then we compare this performance with a 286

sign detector that was first trained for Neo-Assyrian and then fine-tuned for Old-Babylonian cuneiform. To provide a lower 287

bound we also apply a randomly initialized network and the Neo-Assyrian sign detector without any fine-tuning. 288

The results of the experiment is visualized in Fig. M. A Neo-Assyrian sign detector without any fine-tuning (12.9 mAP) 289

already outperforms a purely supervised sign detector (8.4 mAP). The detection performance of 12.9 mAP can be interpreted 290

as an estimate of the similarity between Neo-Assyrian and Old-Babylonian cuneiform, indicating some overlap between 291

the two. When fine-tuning the Neo-Assyrian sign detector on Old-Babylonian cuneiform, we note a significant increase in 292

performance (25.4 mAP). In order to close the gap to a Neo-Assyiran detector, more training data is required using manual 293

sign annotations or levering the weak supervision in transliterations by means of our proposed approach. 294

C8 Web Application of Cuneiform Sign Detection 295

In the provided video, we demonstrate a web application of the cuneiform sign detector. The purpose of this demonstration 296

is to illustrate how a sign detector could be made available to Assyriologists. Moreover, we provide the code of the web 297

application. The web application offers the following core functionality: 1) create collections of tablet images, 2) upload 298

tablet images, 3) apply the cuneiform sign detector, 4) visualize cuneiform sign detections, and 5) annotate cuneiform signs 299

and lines. Please refer to the code repository for more details (link provided in main article). 300

In the video the following steps are shown: A tablet image is opened in the web interface, and the detection function is 301

called. Since the image resolution of tablet images varies a lot, the user manually determines the average height of a line for 302

re-scaling the tablet image to a standard sign height. A coarse approximation is sufficient, as the sign detector is searching 303

across multiple scales by default. This step can be automated using line detection as implemented for the iterative training 304

procedure. After running the detection, the results are immediately available for analysis in the web interface. Raw detections 305

are visualized as bounding boxes, whose color indicates the detection confidence. The sign code class of the detected signs 306

can be displayed in the form of readings or Unicode symbols (by pressing [.] or [ctrl] + [.] respectively) or by hovering 307

with a cursor over the signs. It is possible to adjust thresholds to filter raw detections in two ways: 1) Raw detections can 308

be filtered according to their confidence values, only displaying detections with a minimum confidence. 2) Raw detections 309

can be filtered by means of non-maximum suppression (NMS): For each pair of raw detections compute the overlap of their 310

bounding boxes and if two boxes have an overlap larger than the selected NMS-threshold remove the detection with the lower 311

detection confidence. 312

Besides supporting the analysis of cuneiform tablets, the web interface can also facilitate the manual annotation process for 313

semi-supervised training: Instead of annotating tablet images from scratch, an expert first applies the trained sign detector 314

from our approach to obtain sign detections as a starting point, thus speeding up the annotation process significantly. 315
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