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Abstract. We propose a compositionality architecture for perceptual
organization which establishes a novel, generic, algorithmic framework
for feature binding and condensation of semantic information in im-
ages. The underlying algorithmic ideas require a hierarchical structure
for various types of objects and their groupings, which are guided by
gestalt laws from psychology. A rich set of predefined feature detectors
with uncertainty that perform real-valued measurements of relationships
between objects can be combined in this flexible Bayesian framework.
Compositions are inferred by minimizing the negative posterior group-
ing probability. The model structure is founded on the fundamental per-
ceptual law of Prägnanz. The grouping algorithm performs hierarchical
agglomerative clustering and it is rendered computationally feasible by
visual pop-out. Evaluation on the edgel grouping task confirms the ro-
bustness of the architecture and its applicability to grouping in various
visual scenarios.

1 Introduction

Simple entities like points, isolated edgels or even small image patches provide
only local, relatively unreliable information about objects in the image. This
fact and the large number of such simple objects call for a processing step that
concentrates information in few descriptive objects. The procedure focuses on
the relevant entities in an image and increases the information content of single
entities by forming complex groupings of simple ones. As a result, a hierarchy
of compositions is created that contains objects of increasing robustness and
growing relevance with respect to the whole image. This goal is exactly the
primary objective of a composition system, as presented by Geman et al. [7].
Although our system resembles in its structure more neural nets and graphical
models than stochastic grammars as used in [7, 4], the principle of compositional-
ity constitutes a central part of our approach which follows from the philosophy
of Geman. Psychological and neurophysiological concepts related to perceptual
organization are ported and integrated into a uniform, algorithmic framework
using methods common to computer science such as energy minimization and
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compositionality. The goal is to obtain a universally applicable, robust grouping
algorithm that can be used as a preprocessing step for subsequent applications
such as search and retrieval of objects.

The above described processing has the underlying psychological motivation
that a representation of the original image which is based on such groupings is
perceptually more salient and simpler than unstructured sets of pixels or edgels.
To create simple, stable, and perceptually salient groupings, Gestalt psychology
proposes the fundamental principle of Prägnanz [5, 8]. Moreover, numerous sim-
ple (compared to Prägnanz) Gestalt laws [5, 8] exist that approximately entail
Prägnanz. These laws (e.g. proximity of entities, their closure, or their similar-
ity in orientation) form the basis for the implemented feature detectors, called
relations in the following. These relations act as sensors that perceive a certain
mutual relatedness of objects in a perceptually meaningful way.

In this paper we introduce a highly flexible algorithmic framework that
provides a uniform embedding of arbitrary, uncertain feature detectors. Con-
sequently we also have to control the interaction of a large number of these com-
ponents. To unify and ease the design of different kinds of feature detectors, we
define a uniform basic structure for these detectors which spans the probability
space for feature groupings. The negative posterior grouping probability serves
as a cost function which measures the quality of different perceptual organi-
zations. The grouping algorithm performs hierarchical agglomerative clustering
[6] of these objects to minimize the grouping costs. To speed up the process,
psychological concepts like visual pop-out efficiently prune the solution space.

As a result, our approach achieves the goal to reduce the dependence on
single relations and, thereby, it is robustified against cues that are accidentally
erroneous in certain situations. The analysis and processing of the numerous
feature detectors produces a sensor fusion scheme that allows us to extract the
various hints or cues for a grouping out of the scene.

The basic ideas on perceptual organization in computer vision relevant to the
presented architecture are motivated by Lowe in [11]. However, our approach
differs from Lowe’s and other related work [9, 14, 17] in the fundamental way
the feature detectors are used: Our framework handles numerous features in a
flexible way compared to the alternative approaches which base their grouping
decisions on a very limited number of fixed cues. Williams and Thornber [17] use
a random walk process to formulate a new saliency measurement. By defining
saliency measures for edgels, Shashua and Ullman [14] separate edgels into highly
salient figure elements and background elements of lower saliency. Jacobs [9]
computes the likelihood that a group of edgels is produced by a single object to
direct a recognition system and improve its accuracy.

The strategy to implement a large number of uncertain feature detectors
allows us to simplify the specification of concrete relations as far as possible.
Related work by Amir and Lindenbaum [1] on the integration of large numbers
of sensors differs exactly in this system design step. While the relations in their
approach are mainly treated as binary valued random variables (presence or
absence of relationships between objects), that have to be specified by the user,
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we offer a Bayesian concept for real-valued, uncertain feature detectors. Thereby
different features of wide ranging strength can be detected and compared.

The next section presents a discussion of Prägnanz to provide the foundation
for the cost function. Thereafter our algorithmic framework for the integration of
arbitrary relations into a common cost function will be described. Section 4 will
present the perceptually optimized grouping algorithms. Finally the performance
of the presented architecture will be evaluated in section 5.

2 Prägnanz, Redundancy, and MDL

Fred Attneave [2] has stated that the received visual input is highly redundant
and that large parts of a scene are predictable, given only a small fraction of
the overall stimulus. This is due to some restrictions in the visually perceivable
world he attributes to lawfulness of nature.

Given (an estimate of) the complexity of the visually perceivable world (e.g.
by measuring the relative frequency of certain involved phenomena), it is possible
to acquire a set of rules that predict large parts of a scene on the basis of only
a small number of detected features. These rules, which exploit redundancy,
are just the Gestalt laws. Moreover, a grouping of maximal Prägnanz can be
understood as an optimal exploitation of this redundancy [2]. Consequently, this
repetition of information within clusters can be avoided in the joint, probably
even lossy encoding of the objects. The resulting strategy represents a realization
of the minimum description length principle.

These ideas are illustrated by a brief example: Consider two straight edgels
that are situated adjacent to each other, each represented by its respective end-
points. A joint encoding of the grouping can be represented by three points, or
in case of collinearity by only two points. More complex entities such as squares
or templates for natural objects such as cars need even fewer parameters in pro-
portion to the number of their elementary constituents. Generalizing this idea,
Biederman [3] proposed geons, a set of image primitives that can be used as
components of complex visual scenarios. In conclusion, the goal of a grouping
that obeys maximal Prägnanz can be reached by following the MDL principle
and minimizing a corresponding cost function.

Splitting Up Prägnanz: A direct specification of a cost function for Prägnanz
is too complicated and we, therefore, replace the Prägnanz concept by directly
measurable relations: Gestalt psychology proposes a number of Gestalt laws,
which analyze similarity of objects in certain image features (e.g. color or orien-
tation). Thereby, the relations detect the redundancies of the resulting grouping
which favors the simplicity in image coding.

3 An Energy Function for Gestalt Principles

Outline of the Algorithm: The input to the grouping algorithm are edgels,
short straight edge elements gained from a Canny edge detector. Furthermore
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color histograms in a small neighborhood on both sides of each edgel are com-
puted. Thereafter the grouping algorithm uses various feature detectors to obtain
information about the mutual relationship of objects in order to create a hier-
archy of groupings. This procedure is mainly bottom-up, thereby not requiring
additional knowledge about the scene.

3.1 Objects

To support the idea of minimizing the overall description length, this approach
defines a hierarchy of objects of different complexity. Composite types of objects
are defined via inclusion of simpler ones, e.g. curves are defined as compositions
of edgels or other curves. The basic objects are edgels that result from a Canny
edge detector. An edgel E is described by its two endpoints in Euclidian space,
Epi(E) ∈ R2, i ∈ {−1, 1} . The goal is to group these objects to perceptually
meaningful curves which are the second type of objects we use. These entities
are applicable to widely differing scenarios and are therefore chosen to exemplify
the general architecture subsequently. Other types of objects are grouped in a
similar fashion using appropriate features. The endpoints of a curve C are recur-
sively defined via its components, which are edgels or other curves. Assuming a
grouping of two objects O−1, O1 that can be edgels or curves, the endpoint of
entity Oα that is closest to the endpoints of the other object has the index

cEp(Oα, O−α) := argmin
i∈{−1,1}

min
j∈{−1,1}

{∥∥Epi(Oα)− Epj(O−α)
∥∥

2

}
. (1)

The endpoints of C are then

Epi(C) := Ep−cEp(Oi,O−i)
(Oi), i ∈ {−1, 1} . (2)

Moreover the additional feature of orientation is added to the endpoints of
an edgel (the curves take over this parameter during the grouping):

Eporient
i (E) := ]

{
Epi(E)− Ep−i(E); (1, 0)T

}
, i ∈ {−1, 1} . (3)

Each object, except for the singleton edgels, is a grouping of other objects. The
goal is to group objects to perceptually meaningful compositions that constitute
new objects. The hierarchy of the created compositions is logged in a rootless
tree, the dependency graph of the participating objects. Each vertex corresponds
to an object (the edgels form the leafs of this structure), while the arcs represent
the grouping relationships between compositions and their subparts.

3.2 Relations

In the following, a generic and flexible framework for all different kinds of group-
ing cues will be presented. As a result a modular and adjustable cost function is
obtained that measures the gain in Prägnanz given arbitrary features. Therefore
each of the underlying relations corresponds to a technical neuron that perceives
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a specific mutual relatedness of objects from a previous level of the hierarchy
mentioned above as its input. The outputs of sensors with the same entities as
input are combined to obtain the overall grouping cost function. These mea-
sures are in turn used recursively for subsequent groupings via a feed-forward
architecture of successively applied relations. Given this structure, perceptual
organization can be understood literally as applying relations to their respec-
tive sensory input in order to organize these percepts in a dependency graph of
objects.

The final output of each relation, the vote, corresponds to the probability
that the considered objects belong to a joint object, given the information on
their mutual relationship that is gathered by the relation. Letting r denote the
output of the relation and using only two objects O1 and O2 for simplicity (each
of these is a singleton or a grouping of objects), the probability of a perceptually
favorable grouping is

P (O1 �O2|r (O1, O2)) . (4)

Here the symbol � indicates that the objects join to form a new grouped object
(e.g. a new composition O := O1 �O2).

In order to compute a relation it is splitted into two separate parts. At first
a feature extration function is used to obtain information on the relationship
between objects. This sensor data is then normalized and interpreted so that all
different relations provide equation (4) with an unified input. The output of the
relation is the composition

r := sI ◦ sD . (5)

The first part computes the strength of a specified relationship of the objects
(e.g. their relative orientation or similarity of color) given the data. This part
corresponds to the input nodes of a perceptron and its output resembles the
internal activity level, or the action potential of their neural counterparts. Letting
O denote the set of all objects and assuming for simplicity a compact codomain
[sdmin, sdmax], this feature extraction can be summarized as

sD : O×O → [sdmin, sdmax] ⊂ R . (6)

This function comprises both the perception of relevant features of the objects
and the computation of a relation specific distance measure. In order to combine
different measures they have to be normalized, i.e., this normalization corre-
sponds to the output function of a neuron,

sI : [sdmin, sdmax] → [0, 1] . (7)

Subsequently, the grouping probability can be computed using the output of
the relation and Bayesian decision theory [6]

P (O1 �O2|r) =
p(r|O1 �O2) · P (O1 �O2)

p(r)
. (8)

Using marginalization, the evidence can be written as

p(r) = p(r|O1 �O2)︸ ︷︷ ︸
 causal reason

·P (O1 �O2) + p(r|O1 6�O2)︸ ︷︷ ︸
 accidentalness

·P (O1 6�O2) . (9)
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In the following a Gaussian probability density function

ϕ(r) :=
1√
2πσ

e−
(r−µ)2

2σ2 , µ ∈ [0, 1], σ ∈ R+ (10)

is used as a parametric model of the likelihood of a relation, Φ being the cu-
mulative distribution. The range of mean µ is restricted to the range of r. The
likelihood is then a rectified Gaussian

p(r|O1 �O2) =
ϕ(r)

Φ(1)− Φ(0)
. (11)

Furthermore, the mean µ is the expected value of the relation

µ = Ep(r|O1�O2)[r] , (12)

given that the objects form a grouping. The variance σ2 corresponds to the
inverse significance of the relation and reflects its uncertainty. Having a distri-
bution with a sharp peak, a response close to the optimum, r(O1, O2) ≈ µ, is a
good indication for a reliable grouping.

In contrast to the likelihood, p(r|O1 6�O2) indicates how likely it is that
r takes on a certain value, given that the objects do not form a perceptually
meaningful composition. In absence of further information, most relations permit
the approximation of this accidentalness term by assuming that all outputs are
equally likely in this case, c.f. [13].

3.3 The Energy Function

The approach uses numerous relations that provide knowledge about different
features in order to find out whether objects form a grouping. Therefore, sensors
that are uncertain about a specific clustering of entities can be compensated by
others. Given a sensor fusion of n different relations, a voting scheme (see figure
1) is proposed that pools them in the overall energy function

H(O1 �O2|r1, . . . , rn) = − log

[
n∏

i=1

P (O1 �O2|ri)
wi∑n

j=1 wj

]
. (13)

The weights wi correct slight statistical dependencies between the features that
are detected by different relations. If they are all independent, i.e., p(ri|ri+1, . . . ,
rn, O1� O2) = p(ri|O1� O2), all weights are equal and H leads to the same
grouping decisions as − log P (O1 �O2|r1, . . . , rn), c.f. [13]. An example of such
a correction is our model for the relation that detects the parallelism of the ends
of two curves. Since it relies on similar features as the relation for collinearity,
the weight is lower than the chosen standard value of 2. The management of
the voting information is carried out in a knowledge base. With this framework
each relation can be designed without much effort by specifying the two sensor
functions and the parameters µ, σ, and the weight. Furthermore, these variables
offer a uniform point of access to adjust the relations and their interaction.
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The overall cost function for the current grouping of the complete image is
formed by the set Ol of all groupings in the latest level of the dependency graph,

Ĥ(Ol|r1, . . . , rn) =
∑

O∈Ol

H(O|r1, . . . , rn) . (14)

3.4 Implemented Relations

So far a number of relations have been specified to illustrate the potential of the
presented architecture. In the following the design of some of these sensors will
be described in detail. The implemented Gestalt laws are proximity, similarity
of orientation and color, good continuation, and closure (see [5, 8]).

Let O−1, O1 ∈ O be two curves or edgels with endpoints Epi(Oj), i, j ∈
{−1, 1} and the corresponding grouping O−1,1 := O−1 � O2. Furthermore,
maxDist ∈ R is set to the length of the image diagonal and the abbreviation

ĉEp(Oi, O−i) := EpcEp(Oi,O−i)
(Oi), i ∈ −1, 1 (15)

is used. The relation for proximity of the endpoints of two curves or edgels is

sDprox(O−1, O1) :=
∥∥∥ĉEp(O−1, O1)− ĉEp(O1, O−1)

∥∥∥
2
∈ [0, maxDist] , (16)

sIprox(d) := d/maxDist , (17)
µprox := sI(0), σprox := sI(max{tl,min{th, avgDist}}), wprox := 2.3 . (18)

To estimate avgDist, the distances of a number of randomly located objects
to their nearest neighbors (distance of endpoints) are averaged with threshold
constants tl := 4, th := 40.

Relative orientation (or parallelism) of the ends of two curves or edgels is
modeled by

sDorient(O−1, O1) :=
∣∣∣Eporient

cEp(O1,O−1)
(O1)− Eporient

cEp(O−1,O1)
(O−1)

∣∣∣ mod 2π , (19)

sIorient(α) := 1− |π − α|
π

, (20)

µorient := 1, σorient := sIorient(10◦/180◦ · π), worient := 1.0 . (21)

A simple, computationally feasible way to measure the gain in closure of
object O−1 by grouping it with O1 is modeled as follows:

gaps(O−1, O1) :=
∥∥∥ĉEp(O1, O−1)− ĉEp(O−1, O1)

∥∥∥
2

, (22)

gapo(O−1, O1) :=
∥∥∥Ep−cEp(O1,O−1)

(O1)− Ep−cEp(O−1,O1)
(O−1)

∥∥∥
2

, (23)

sDclosure(O−1, O1) := max

{
gaps(O−1, O1) + gapo(O−1, O1)∥∥Ep−1(O−1)− Ep1(O−1)

∥∥
2

, l

}
. (24)
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Of course equation (24) is only applicable to objects that are not perfectly closed
and a parameter l := 2 penalizes losses in closure above this bound equally.
Therefore short curves, whose closure can fluctuate a lot when they are grouped,
can still receive a fixed lower probability mass from the rectified gaussian intro-
duced above. The remaining components of this relation are

sIclosure(g) := g/l , (25)
µclosure := sI(0), σclosure := sI(1/2), wclosure := 2.0 . (26)

Furthermore, our system computes color histograms for small areas (de-
pending on the length of an edgel) on both sides of an edgel E. The means
c̄E
−1, c̄

E
1 ∈ [0, 255]3 of these two histograms are added to the endpoint section of

each edgel so that the curves inherit these features,

Ep
colorj

i (E) := c̄E
i·j , i, j ∈ {−1, 1} . (27)

Relying on the color information of the edgels, similarity in color of the
local surroundings of two curves and color contrast of both sides of an edgel
are used. Another implemented feature detector is the collinearity of the ends
of two curves. In combination with relative orientation and proximity, an im-
plementation of the Gestalt law of good continuation is formed by these three
relations. Finally another relation performs the recursive propagation of group-
ing probabilities from the component objects in the dependency graph to their
composition.

4 Grouping Algorithms

The grouping algorithm perceives a certain mutual relatedness of some objects
by applying the relations. The resulting energy function provides the necessary
information on which entities to combine.

The solution space in which the grouping algorithm searches, consists of
groupings of the whole image. Each of these is represented by a level in the
dependency graph and consists of all grouped objects that are necessary to
describe the relevant aspects of the image. The grouping algorithm produces a
new level in the graph by grouping entities from a previous level. The resulting
hierarchical agglomerative clustering starts on the initial level that contains only
edgels and returns the last level of the graph that represents the final grouping of
the image. The algorithm performs a search for a perceptually favorable grouping
by minimizing the energy function. Successive states of the clustering procedure
in solution space correspond to successive levels in the dependency graph.

On the one hand a perceptually optimal grouping of the whole image is to
be found eventually. On the other hand the search for such a solution has to
be speeded up in order to obtain computationally feasible algorithms that find
these groupings in the enormously large solution space in reasonable time. This
poses a trade-off between optimality and feasibility. It is possible to come closer
to both objectives simultaneously by placing perceptually motivated restrictions
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(a)

(b)

Fig. 1. (a) Two short curve segments, one moving about the other. The fixed one has a
bend of 18◦ at one end. (b) Plot of the cost function exp−H (labeled groupingProb in
the figure) resulting from the application of the relations proximity, relative orientation
and collinearity to these segments

(c.f. section 2) on the continuations of paths through solution space so that these
lead to reasonably good solutions. In the following we will discuss the grouping
of curves. The grouping of more complex objects proceeds in the same manner.

Greedy Approach: A significant decrease in complexity can be achieved by
making grouping decisions in a greedy fashion. Provided the set of relations con-
veys enough information, groupings will persist once they are formed. In this
case psychology indicates that the resulting speed up is not at the expense of
optimality. The energy function H measures the gain in Prägnanz resulting from
performing one additional grouping that is discriminating two successive states
in solution space. In the above depicted case of persisting groupings this local
optimization leads to a global optimum. Furthermore, the idea is to correct er-
roneous compositions in later stages by producing more complex objects than
curves that are less prone to accidental influences. One cause for such a robust-
ness is additional information about missing components that is available once
a great fraction of a complex object has been detected. Therefore, complex com-
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positions integrate information over large parts of the image. However, work on
these concepts is still in progress.

To further improve the speed of the grouping algorithm, we reduce the
branching factor by early commiting to grouping decisions: The procedure
searches for a grouping partner of the curve with best H, so that the com-
position yields improved Prägnanz, as measured by the energy function. If such
a grouping has been found, the two components are not considered in further
groupings. Starting with N curves each grouping reduces the number of curves
by one, leading to an overall complexity of O(N2).

Attention Control: The grouping algorithm applies the cost function H to
pairs of curves. This process can be accelerated significantly by restricting the
set of grouping partners and thereby limiting the possible successor states. This
is motivated by observations on the way the (human) brain allots attention to
the various inputs, thereby speeding up their perception enormously. Psycholog-
ical and neurophysiological research analyzed the way these processes influence
visual search [10, 16]. One key point is that targets that have features which
differ from the surrounding distractors can pop-out pre-attentively. In contrast
to ideas mentioned in [15], the algorithms developed for this contribution do not
search for a known target in an image. Our goal is to speed up the grouping by
developing processes similar to their pre-attentive neural counterparts that can
group objects directly without serially checking all possible partners of an object
as in regular pairwise grouping.

A uniform framework has been designed that uses some relations to compute
a possibly multidimensional feature vector for each object. The features should
constitute a relevant measure for both, within-group attraction and between-
group segregation, so that groupable objects are similar in feature space. There-
fore, the algorithm induces a partition of this space. The clusters are determined
from an inverting of the relations so that groupable objects have at least one
cell in common. The possible branchings of the decision tree of the previously
presented grouping algorithm are significantly limited by performing this central
clustering prematurely that assigns entities to the according cells. In contrast to
the similarity measure used above, this preprocessing step computes the relevant
features for each object on its own and not pairwise. Thereby only those group-
ings have to be reviewed by the pairwise procedure that have joint cells. Since
only those groupings are neglected that would not have a chance to be grouped
anyway, this acceleration still preserves the optimality and leaves the clustering
resulting from the greedy approach unchanged.

The speed up is significantly higher than the acceleration that arises out
of regular shielding. Shielding-effects occur when long range interactions are
eclipsed by short, intermediate ones. The acceleration is due to the fact that
a small set of grouping partners pops out immediately and no serial scanning
is needed. Therefore the total complexity of the grouping algorithm reduces to
O(N3/2). Images of size 400× 400 pixels can thereby be processed in only a few
seconds on a Pentium r©II-400 with 128 Mb of RAM. Scenes of size 1000× 1000
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take only a few minutes to be grouped (depending on the choice of parameters
and on the image this takes about one to three minutes).

5 Evaluation of the Framework

In the following, exactly the same grouping algorithm is applied to numerous
different visual scenarios which emphasizes the flexibility of the architecture.
Only the scale parameter and edgel density of the preprocessing edge detector
are changed for the first image to illustrate the resulting phenomena. All other
scenes are processed with a scale parameter σ = 2 of the edge detector. Distances
are measured in pixel throughout this paper. To improve the legibility of the
illustration we only visualize a certain fraction of the longest curves so that the
output is not too densely filled with groupings. Again we are only using objects
of type curve for these tests in order to present the architecture in its most
general form.

Figures 2 a), c), and 3 a), c) show the original images, while figures 2 b),
d), and 3 b), d) display the respective groupings. The first image illustrates the
capabilities of the algorithm to group loosely coupled edgels coming from the
edge detector. Moreover the scale parameter was set to 4 [pixel] for this image.

Figure 4 shows an image and the only minimally differing groupings of this
original and of a version with added white noise. The signal to noise ratio is
approximately 17 dB. Furthermore two images of similar cars viewed under dif-
ferent environmental conditions and perspectives were grouped (see figure 5) to
illustrate the degree of invariance of certain curves against these effects.

Finally the grouping algorithm is tested using the human segmented images
presented in [12]. Fifteen original images with about seven hand segmentations
available for each image are used to select only those edgels coming from the
Canny detector that lie on the respective human produced grouping. These re-
maining edgels are grouped using our system. The number of resulting curves and
their length are then compared with those that are generated by using an edge
point linking strategy as is common in implementations of the Canny detector.

On average, our algorithm generates only a fourth (28%±3%) of the number
of curves which are produced by the linking method while both methods explain
the same number of edgels in the hand segmentations. Similarly, our curves are
4.2± 0.17 times longer. It remains to mention that these results probably would
further improve, if the used images would have been less textured, since the
currently implemented relations do not exploit region information.

6 Conclusion and Further Work

In this contribution a novel, flexible algorithmic framework for perceptual fea-
ture grouping has been presented based on fundamental principles of perceptual
organization. The groupings are integrated into a hierarchical architecture that
has been designed on the philosophy of compositionality. Moreover, a sensor fu-
sion scheme has been presented that is flexible, problem independent, and easily
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(a) (b)

(c) (d)

Fig. 2. (a) Original image. (b) Grouping after running Canny with σ = 4. Processing
time is about 2 seconds on a PII-400 with 128Mb of RAM. (c) Original image. (d)
Grouping after running Canny with σ = 2. Processing time is about 95 seconds
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(a) (b)

(c) (d)

Fig. 3. (a) Original image from www.spaceimaging.com (b) Grouping after running
Canny with σ = 2. Processing time is about 2.5 minutes. (c) Original image from
www.spaceimaging.com (d) Grouping after running Canny with σ = 2. Processing time
is about 3.5 minutes
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(a) (b)

(c)

Fig. 4. (a) Original image. (b) Grouping after running Canny with σ = 2. Processing
time is about 15 seconds. (c) Grouping of the noisy image after running Canny with
σ = 2. Processing time is about 35 seconds
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(a) (b)

(c) (d)

Fig. 5. (a) Original image. (b) Grouping after running Canny with σ = 2. Processing
time is about 2 minutes. (c) Original image. (d) Grouping after running Canny with
σ = 2. Processing time is about 70 seconds
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extendable with respect to the feature detectors that are used. As a result an
open design of an energy function has been obtained that is directly based on
fundamental perceptual principles. Using concepts from psychology the related
grouping algorithm has been designed and brought to a computationally feasible
form. Finally real world experiments have demonstrated that the architecture
meets the aspired properties. Moreover, the framework has been embedded into
a number of commonly used techniques including neural networks and graphical
models (c.f. [13]) in order to gain new insights into perceptual organization and
into the presented architecture.
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